EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Python Data Science Handbook

Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Book IPython Interactive Computing and Visualization Cookbook

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Book Python for Data Analysis

Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Book Learning pandas

    Book Details:
  • Author : Michael Heydt
  • Publisher : Packt Publishing Ltd
  • Release : 2015-04-16
  • ISBN : 1783985135
  • Pages : 721 pages

Download or read book Learning pandas written by Michael Heydt and published by Packt Publishing Ltd. This book was released on 2015-04-16 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are a Python programmer who wants to get started with performing data analysis using pandas and Python, this is the book for you. Some experience with statistical analysis would be helpful but is not mandatory.

Book Pandas in Action

    Book Details:
  • Author : Boris Paskhaver
  • Publisher : Simon and Schuster
  • Release : 2021-10-12
  • ISBN : 163835104X
  • Pages : 438 pages

Download or read book Pandas in Action written by Boris Paskhaver and published by Simon and Schuster. This book was released on 2021-10-12 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take the next steps in your data science career! This friendly and hands-on guide shows you how to start mastering Pandas with skills you already know from spreadsheet software. In Pandas in Action you will learn how to: Import datasets, identify issues with their data structures, and optimize them for efficiency Sort, filter, pivot, and draw conclusions from a dataset and its subsets Identify trends from text-based and time-based data Organize, group, merge, and join separate datasets Use a GroupBy object to store multiple DataFrames Pandas has rapidly become one of Python's most popular data analysis libraries. In Pandas in Action, a friendly and example-rich introduction, author Boris Paskhaver shows you how to master this versatile tool and take the next steps in your data science career. You’ll learn how easy Pandas makes it to efficiently sort, analyze, filter and munge almost any type of data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Data analysis with Python doesn’t have to be hard. If you can use a spreadsheet, you can learn pandas! While its grid-style layouts may remind you of Excel, pandas is far more flexible and powerful. This Python library quickly performs operations on millions of rows, and it interfaces easily with other tools in the Python data ecosystem. It’s a perfect way to up your data game. About the book Pandas in Action introduces Python-based data analysis using the amazing pandas library. You’ll learn to automate repetitive operations and gain deeper insights into your data that would be impractical—or impossible—in Excel. Each chapter is a self-contained tutorial. Realistic downloadable datasets help you learn from the kind of messy data you’ll find in the real world. What's inside Organize, group, merge, split, and join datasets Find trends in text-based and time-based data Sort, filter, pivot, optimize, and draw conclusions Apply aggregate operations About the reader For readers experienced with spreadsheets and basic Python programming. About the author Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries. Table of Contents PART 1 CORE PANDAS 1 Introducing pandas 2 The Series object 3 Series methods 4 The DataFrame object 5 Filtering a DataFrame PART 2 APPLIED PANDAS 6 Working with text data 7 MultiIndex DataFrames 8 Reshaping and pivoting 9 The GroupBy object 10 Merging, joining, and concatenating 11 Working with dates and times 12 Imports and exports 13 Configuring pandas 14 Visualization

Book Pandas for Everyone

    Book Details:
  • Author : Daniel Y. Chen
  • Publisher : Addison-Wesley Professional
  • Release : 2017-12-15
  • ISBN : 0134547055
  • Pages : 1093 pages

Download or read book Pandas for Everyone written by Daniel Y. Chen and published by Addison-Wesley Professional. This book was released on 2017-12-15 with total page 1093 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning

Book Pandas Cookbook

    Book Details:
  • Author : Theodore Petrou
  • Publisher : Packt Publishing Ltd
  • Release : 2017-10-23
  • ISBN : 1784393347
  • Pages : 534 pages

Download or read book Pandas Cookbook written by Theodore Petrou and published by Packt Publishing Ltd. This book was released on 2017-10-23 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve most complex scientific computing problems with ease Leverage fast, robust data structures in pandas to gain useful insights from your data Practical, easy to implement recipes for quick solutions to common problems in data using pandas Who This Book Is For This book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory. What You Will Learn Master the fundamentals of pandas to quickly begin exploring any dataset Isolate any subset of data by properly selecting and querying the data Split data into independent groups before applying aggregations and transformations to each group Restructure data into tidy form to make data analysis and visualization easier Prepare real-world messy datasets for machine learning Combine and merge data from different sources through pandas SQL-like operations Utilize pandas unparalleled time series functionality Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and Seaborn In Detail This book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter. Many advanced recipes combine several different features across the pandas library to generate results. Style and approach The author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.

Book Practical Data Analysis Using Jupyter Notebook

Download or read book Practical Data Analysis Using Jupyter Notebook written by Marc Wintjen and published by Packt Publishing Ltd. This book was released on 2020-06-19 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand data analysis concepts to make accurate decisions based on data using Python programming and Jupyter Notebook Key FeaturesFind out how to use Python code to extract insights from data using real-world examplesWork with structured data and free text sources to answer questions and add value using dataPerform data analysis from scratch with the help of clear explanations for cleaning, transforming, and visualizing dataBook Description Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data. After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps. Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries. By the end of this book, you'll have gained the practical skills you need to analyze data with confidence. What you will learnUnderstand the importance of data literacy and how to communicate effectively using dataFind out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysisWrangle data and create DataFrames using pandasProduce charts and data visualizations using time-series datasetsDiscover relationships and how to join data together using SQLUse NLP techniques to work with unstructured data to create sentiment analysis modelsDiscover patterns in real-world datasets that provide accurate insightsWho this book is for This book is for aspiring data analysts and data scientists looking for hands-on tutorials and real-world examples to understand data analysis concepts using SQL, Python, and Jupyter Notebook. Anyone looking to evolve their skills to become data-driven personally and professionally will also find this book useful. No prior knowledge of data analysis or programming is required to get started with this book.

Book Hands On Data Analysis with Pandas

Download or read book Hands On Data Analysis with Pandas written by Stefanie Molin and published by Packt Publishing Ltd. This book was released on 2019-07-26 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery Key FeaturesPerform efficient data analysis and manipulation tasks using pandasApply pandas to different real-world domains using step-by-step demonstrationsGet accustomed to using pandas as an effective data exploration toolBook Description Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. What you will learnUnderstand how data analysts and scientists gather and analyze dataPerform data analysis and data wrangling in PythonCombine, group, and aggregate data from multiple sourcesCreate data visualizations with pandas, matplotlib, and seabornApply machine learning (ML) algorithms to identify patterns and make predictionsUse Python data science libraries to analyze real-world datasetsUse pandas to solve common data representation and analysis problemsBuild Python scripts, modules, and packages for reusable analysis codeWho this book is for This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.

Book The Pandas Workshop

    Book Details:
  • Author : Blaine Bateman
  • Publisher : Packt Publishing Ltd
  • Release : 2022-06-17
  • ISBN : 1800202873
  • Pages : 744 pages

Download or read book The Pandas Workshop written by Blaine Bateman and published by Packt Publishing Ltd. This book was released on 2022-06-17 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the fundamentals of data science with Python by analyzing real datasets and solving problems using pandas Key Features • Learn how to apply data retrieval, transformation, visualization, and modeling techniques using pandas • Become highly efficient in unlocking deeper insights from your data, including databases, web data, and more • Build your experience and confidence with hands-on exercises and activities Book Description The Pandas Workshop will teach you how to be more productive with data and generate real business insights to inform your decision-making. You will be guided through real-world data science problems and shown how to apply key techniques in the context of realistic examples and exercises. Engaging activities will then challenge you to apply your new skills in a way that prepares you for real data science projects. You'll see how experienced data scientists tackle a wide range of problems using data analysis with pandas. Unlike other Python books, which focus on theory and spend too long on dry, technical explanations, this workshop is designed to quickly get you to write clean code and build your understanding through hands-on practice. As you work through this Python pandas book, you'll tackle various real-world scenarios, such as using an air quality dataset to understand the pattern of nitrogen dioxide emissions in a city, as well as analyzing transportation data to improve bus transportation services. By the end of this data analytics book, you'll have the knowledge, skills, and confidence you need to solve your own challenging data science problems with pandas. What you will learn • Access and load data from different sources using pandas • Work with a range of data types and structures to understand your data • Perform data transformation to prepare it for analysis • Use Matplotlib for data visualization to create a variety of plots • Create data models to find relationships and test hypotheses • Manipulate time-series data to perform date-time calculations • Optimize your code to ensure more efficient business data analysis Who this book is for This data analysis book is for anyone with prior experience working with the Python programming language who wants to learn the fundamentals of data analysis with pandas. Previous knowledge of pandas is not necessary.

Book Getting Started

Download or read book Getting Started written by David Allen and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: To mark his 20th anniversary at the Inland Valley Daily Bulletin, David Allen goes back to the beginning to survey his first four years of columns, when the valley was new territory for him. After unpacking endlessly, he reports for jury duty in Chino, attends a Mexican wrestling match in Pomona and pays attention to movie dialogue about Rancho Cucamonga. Not limiting himself to local news, he wonders what a Rolling Stones tour in the distant future might be like (sponsor: Depends), considers applying for a job in Swaziland as the town hangman and enters clothing stores alert for clues about which side is for men. Even if you follow David Allen's current work in your daily newspaper, you probably never saw these columns, or if you did, forgot you read them or repressed the memory. Here they are again, with all the duds removed (we hope), and with a candid introduction by the author about trying to establish himself when he was just - wait for it - getting started.

Book Learning the Pandas Library

Download or read book Learning the Pandas Library written by Matt Harrison and published by Createspace Independent Publishing Platform. This book was released on 2016-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.

Book An Introduction to Data Science With Python

Download or read book An Introduction to Data Science With Python written by Jeffrey S. Saltz and published by SAGE Publications. This book was released on 2024-06-25 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: For those new to Python and data science, this text guides readers through the tools and techniques used to analyze data and generate predictive models. This book starts with the basics, includes practice questions to check understanding, and delves into advanced topics like neural networks and deep learning, all with clarity and a touch of humor.

Book Panda Notebook

    Book Details:
  • Author : Dp Journals and Notebooks
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2017-09-19
  • ISBN : 9781976531651
  • Pages : 126 pages

Download or read book Panda Notebook written by Dp Journals and Notebooks and published by Createspace Independent Publishing Platform. This book was released on 2017-09-19 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cute panda notebook features 125 lined pages. Ample room to record your thoughts, ideas, dreams, notes. Ideal for any type of journaling, doodling, diary, planning. Perfect panda notebook for girls, boys, kids, or anyone who loves pandas! Thick, colorful, matte cover. Premium, pure white, 50 lb, acid-free paper. Made in the USA. Makes a fun Christmas gift, birthday gift, or get one for yourself.

Book Head First Python

    Book Details:
  • Author : Paul Barry
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2023-08-16
  • ISBN : 1492051241
  • Pages : 1029 pages

Download or read book Head First Python written by Paul Barry and published by "O'Reilly Media, Inc.". This book was released on 2023-08-16 with total page 1029 pages. Available in PDF, EPUB and Kindle. Book excerpt: What will you learn from this book? Want to learn the Python language without slogging your way through how-to manuals? With Head First Python, you'll quickly grasp Python's fundamentals by working with built-in data structures and functions. You'll build your very own web app, which—once it's ready for prime time—runs in the cloud. You'll learn how to wrangle data with Python, scrape data from the web, feed data to pandas, and interact with databases. This third edition is a complete learning experience that will help you become a bona fide Python programmer in no time. What's so special about this book? If you've read a Head First book, you know what to expect: a visually rich format designed for the way your brain works. If you haven't, you're in for a treat. With this book, you'll learn Python through a multisensory experience that engages your mind—rather than a text-heavy approach that puts you to sleep.

Book Python Data Visualization Essentials Guide

Download or read book Python Data Visualization Essentials Guide written by Kallur Rahman and published by BPB Publications. This book was released on 2021-07-30 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build your data science skills. Start data visualization Using Python. Right away. Become a good data analyst by creating quality data visualizations using Python. KEY FEATURES ● Exciting coverage on loads of Python libraries, including Matplotlib, Seaborn, Pandas, and Plotly. ● Tons of examples, illustrations, and use-cases to demonstrate visual storytelling of varied datasets. ● Covers a strong fundamental understanding of exploratory data analysis (EDA), statistical modeling, and data mining. DESCRIPTION Data visualization plays a major role in solving data science challenges with various capabilities it offers. This book aims to equip you with a sound knowledge of Python in conjunction with the concepts you need to master to succeed as a data visualization expert. The book starts with a brief introduction to the world of data visualization and talks about why it is important, the history of visualization, and the capabilities it offers. You will learn how to do simple Python-based visualization with examples with progressive complexity of key features. The book starts with Matplotlib and explores the power of data visualization with over 50 examples. It then explores the power of data visualization using one of the popular exploratory data analysis-oriented libraries, Pandas. The book talks about statistically inclined data visualization libraries such as Seaborn. The book also teaches how we can leverage bokeh and Plotly for interactive data visualization. Each chapter is enriched and loaded with 30+ examples that will guide you in learning everything about data visualization and storytelling of mixed datasets. WHAT YOU WILL LEARN ● Learn to work with popular Python libraries and frameworks, including Seaborn, Bokeh, and Plotly. ● Practice your data visualization understanding across numerous datasets and real examples. ● Learn to visualize geospatial and time-series datasets. ● Perform correlation and EDA analysis using Pandas and Matplotlib. ● Get to know storytelling of complex and unstructured data using Bokeh and Pandas. ● Learn best practices in writing clean and short python scripts for a quicker visual summary of datasets. WHO THIS BOOK IS FOR This book is for all data analytics professionals, data scientists, and data mining hobbyists who want to be strong data visualizers by learning all the popular Python data visualization libraries. Prior working knowledge of Python is assumed. TABLE OF CONTENTS 1. Introduction to Data Visualization 2. Why Data Visualization 3. Various Data Visualization Elements and Tools 4. Using Matplotlib with Python 5. Using NumPy and Pandas for Plotting 6. Using Seaborn for Visualization 7. Using Bokeh with Python 8. Using Plotly, Folium, and Other Tools for Data Visualization 9. Hands-on Examples and Exercises, Case Studies, and Further Resources

Book Data Science Projects with Python

Download or read book Data Science Projects with Python written by Stephen Klosterman and published by Packt Publishing Ltd. This book was released on 2021-07-29 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.