Download or read book What Have We Learned from Historical Comparisons of Income and Productivity written by Barry J. Eichengreen and published by . This book was released on 1986 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Measurement of Social Welfare written by Dale Weldeau Jorgenson and published by . This book was released on 1986 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Economics Working Papers a Bibliography written by and published by . This book was released on 1986 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Statistical Analysis of Failure Time Data written by John D. Kalbfleisch and published by John Wiley & Sons. This book was released on 2002-09-09 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns. * Introduces the martingale and counting process formulation swil lbe in a new chapter. * Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations. * Presents new examples and applications of data analysis.
Download or read book Fertility Timing Labor Supply Disruptions and the Wage Profiles of American Women written by David E. Bloom and published by . This book was released on 1987 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Preference Learning written by Johannes Fürnkranz and published by Springer Science & Business Media. This book was released on 2010-11-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Download or read book Journal of the American Statistical Association written by American Statistical Association and published by . This book was released on 2003 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Statistical Analysis of Multivariate Failure Time Data written by Ross L. Prentice and published by CRC Press. This book was released on 2019-05-14 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach provides an innovative look at methods for the analysis of correlated failure times. The focus is on the use of marginal single and marginal double failure hazard rate estimators for the extraction of regression information. For example, in a context of randomized trial or cohort studies, the results go beyond that obtained by analyzing each failure time outcome in a univariate fashion. The book is addressed to researchers, practitioners, and graduate students, and can be used as a reference or as a graduate course text. Much of the literature on the analysis of censored correlated failure time data uses frailty or copula models to allow for residual dependencies among failure times, given covariates. In contrast, this book provides a detailed account of recently developed methods for the simultaneous estimation of marginal single and dual outcome hazard rate regression parameters, with emphasis on multiplicative (Cox) models. Illustrations are provided of the utility of these methods using Women’s Health Initiative randomized controlled trial data of menopausal hormones and of a low-fat dietary pattern intervention. As byproducts, these methods provide flexible semiparametric estimators of pairwise bivariate survivor functions at specified covariate histories, as well as semiparametric estimators of cross ratio and concordance functions given covariates. The presentation also describes how these innovative methods may extend to handle issues of dependent censorship, missing and mismeasured covariates, and joint modeling of failure times and covariates, setting the stage for additional theoretical and applied developments. This book extends and continues the style of the classic Statistical Analysis of Failure Time Data by Kalbfleisch and Prentice. Ross L. Prentice is Professor of Biostatistics at the Fred Hutchinson Cancer Research Center and University of Washington in Seattle, Washington. He is the recipient of COPSS Presidents and Fisher awards, the AACR Epidemiology/Prevention and Team Science awards, and is a member of the National Academy of Medicine. Shanshan Zhao is a Principal Investigator at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina.
Download or read book Probability and Statistical Inference written by J.G. Kalbfleisch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Theory and Practice of Revenue Management written by Kalyan T. Talluri and published by Springer Science & Business Media. This book was released on 2006-02-21 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revenue management (RM) has emerged as one of the most important new business practices in recent times. This book is the first comprehensive reference book to be published in the field of RM. It unifies the field, drawing from industry sources as well as relevant research from disparate disciplines, as well as documenting industry practices and implementation details. Successful hardcover version published in April 2004.
Download or read book Linear Models written by Calyampudi Radhakrishna Rao and published by Springer Science & Business Media. This book was released on 1999 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date account of the theory and applications of linear models. It can be used as a text for courses in statistics at the graduate level as well as an accompanying text for other courses in which linear models play a part. The authors present a unified theory of inference from linear models with minimal assumptions, not only through least squares theory, but also using alternative methods of estimation and testing based on convex loss functions and general estimating equations. The bookincludes a discussion of: -- sensitivity analysis and model selection -- incomplete data sets including regression diagnostics to identify Non-MCAR-processes -- the analysis of categorical data based on a unified presentation of generalized linear models including GEE-methods for correlated response. An extensive appendix on matrix theory will be useful to researchers in econometrics, engineering, and optimization theory.
Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-01-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Download or read book An Author and Permuted Title Index to Selected Statistical Journals written by Brian L. Joiner and published by . This book was released on 1970 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Methods for the Evaluation of Educational Services and Quality of Products written by Paola Monari and published by Springer Science & Business Media. This book was released on 2009-12-07 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents statistical methods and models that can usefully support the ev- uation of educational services and quality of products. The contributions collected in this book summarize the work of several researchers from the universities of Bologna, Firenze, Napoli and Padova. The contributions are written with a cons- tent notation and a uni?ed view, and concern methodological advances developed mostly with reference to speci?c problems of evaluation using real data sets. The evaluation of educational services, as well as the analysis of judgements and preferences, poses severe methodological challenges because of the presence of one or more of the following aspects: the observational (non experimental) nature of the context, which is associated with the well-known problems of selection bias and presence of nuisance factors; the hierarchical structure of the data, that entails c- related observations and consideration of effects at different levels of the hierarchy and their interactions (multilevel analysis); the multivariate and qualitative nature of the dependent variable, that requires the use of ad hoc statistical methodologies; the presence of non observable factors, e. g. the satisfaction, calling for the use of latent variables models; the simultaneous presence of components of pleasure and components of uncertainty in the explication of the judgments, that asks for the speci?cation and estimation of mixture models. The ?rst part of the book deals with latent variable models.
Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.