Download or read book Relativistic Density Functional For Nuclear Structure written by Jie Meng and published by World Scientific. This book was released on 2016-01-11 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success.In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.
Download or read book Fifty Years of Nuclear BCS written by R. A. Broglia and published by World Scientific. This book was released on 2013 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume reviews more than fifty years of theoretical and experimental developments of the concept that properties of atomic nuclei up to a great extent are defined by the pair correlations of nuclear constituents - protons and neutrons. Such correlations in condensed matter are responsible for quantum phenomena on a macroscopic level - superfluidity and superconductivity. After introducing Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity of metals, it became clear that atomic nuclei have properties of superfluid drops, and practically all features of nuclei strongly depend on the pair correlations. Presenting a comprehensive overview of the progress of nuclear science, the contributions from leading physicists around the world, cover the whole spectrum of studies in nuclear physics and physics of other small systems. With the most updated information written in an accessible way, the volume will serve as an irreplaceable source of references covering many years of development and insight into several new problems at the frontiers of science. It will be useful not only for physicists working in nuclear and condensed matter physics, astrophysicists, chemists and historians of science, but will also help students understand the current status and perspectives for the future.
Download or read book Nuclear Collective Motion written by David J. Rowe and published by World Scientific. This book was released on 2010 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two most important developments in nuclear physics were the shell model and the collective model. The former gives the formal framework for a description of nuclei in terms of interacting neutrons and protons. The latter provides a very physical but phenomenological framework for interpreting the observed properties of nuclei. A third approach, based on variational and mean-field methods, brings these two perspectives together in terms of the so-called unified models. Together, these three approaches provide the foundations on which nuclear physics is based. They need to be understood by everyone practicing or teaching nuclear physics, and all those who wish to gain an understanding of the foundations of the models and their relationships to microscopic theory as given by recent developments in terms of dynamical symmetries. This book provides a simple presentation of the models and theory of nuclear collective structure, with an emphasis on the physical content and the ways they are used to interpret data. Part 1 presents the basic phenomenological collective vibrational and rotational models as introduced by Bohr and Mottelson and their many colleagues. It also describes the extensions of these models to parallel unified models in which neutrons and protons move in a mean-field with collective degrees of freedom. Part 2 presents the predominant theories used to describe the collective properties of nuclei in terms of interacting nucleons. These theories, which are shared with other many-body systems, are shown to emerge naturally from the unified models of Part 1.
Download or read book Nuclear Density Functional Theory written by I. Zh Petkov and published by . This book was released on 1991 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the enormous amount of material accumulated in the field of nuclear density functional theory over the last few decades. The goal of the theory is to provide a complete quantum mechanical description and explanation of nuclear phenomena in terms of the local density distribution as a basic ingredient rather than the many particle wavefunction. This leads to a considerable reduction in the mathematical complexity of nuclear many-body problems and to a great conceptual simplicity and visual clarity in its theoretical treatment. The authors develop the mathematical framework on which the theory is based and consider the associated approaches used to analyze experimental data in a variety of nuclei and nuclear processes with widely differing properties.
Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Download or read book Mathematics for Physics written by Michael Stone and published by Cambridge University Press. This book was released on 2009-07-09 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.
Download or read book Physics of Neutron Stars written by A. M. Kaminker and published by Nova Biomedical Books. This book was released on 1995 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Neutron Stars
Download or read book Compact Stars written by Norman K. Glendenning and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Download or read book Quantum Many Body Physics of Ultracold Molecules in Optical Lattices written by Michael L. Wall and published by Springer. This book was released on 2015-04-20 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.
Download or read book Exotic Smoothness And Physics Differential Topology And Spacetime Models written by Torsten Asselmeyer-maluga and published by World Scientific. This book was released on 2007-01-23 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
Download or read book Physics Division Annual Report written by Argonne National Laboratory. Physics Division and published by . This book was released on 1998 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction To Quantum Field Theory written by Michael E. Peskin and published by CRC Press. This book was released on 2018-05-04 with total page 866 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Download or read book Energy Density Functional Methods for Atomic Nuclei written by Nicolas Schunck and published by Iph001. This book was released on 2019-01-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functionals, single- and multi-reference methods, and techniques to describe small- and large-amplitude collective motion or nuclei at high excitation energy. Edited by an expert in energy density functional theory, Dr Nicolas Schunck, alongside several experts within the field, this book provides a comprehensive and informative exploration of EDF methods. Detailed derivations, practical approaches, examples and figures are used throughout the book to give a coherent narrative of topics that have hitherto rarely been covered together.
Download or read book Physical Foundations of Cosmology written by Viatcheslav Mukhanov and published by Cambridge University Press. This book was released on 2005-11-10 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
Download or read book Modern Aspects of Spin Physics written by Walter Pötz and published by Springer. This book was released on 2007-03-05 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The spin degree of freedom is an intrinsically quantum-mechanical phenomenon, leading to both intriguing applications and unsolved fundamental issues (such as "where does the proton spin come from"). The present volume investigates central aspects of modern spin physics in the form of extensive lectures on semiconductor spintronics, the spin-pairing mechanism in high-temperature semiconductors, spin in quantum field theory and the nucleon spin.
Download or read book From Nucleons to Nucleus written by Jouni Suhonen and published by Springer Science & Business Media. This book was released on 2007-04-22 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.
Download or read book Modern Aspects Of Superconductivity Theory Of Superconductivity Second Edition written by Sergei Kruchinin and published by World Scientific. This book was released on 2021-04-14 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to superconductivity, which is one of the most interesting problems in physics. In accordance with the outline of the book, it treats the key problems in the field of superconductivity, in particular, it discusses the mechanism(s) of superconductivity. This book is useful for researchers and graduate students in the fields of solid state physics, quantum field theory, and many-body theory.