EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ordinary Differential Equations and Mechanical Systems

Download or read book Ordinary Differential Equations and Mechanical Systems written by Jan Awrejcewicz and published by Springer. This book was released on 2014-09-17 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a unique self-contained source for both theoretically and application oriented graduate and doctoral students, university teachers, researchers and engineers of mechanical, civil and mechatronic engineering.

Book Differential Equations for Engineers

Download or read book Differential Equations for Engineers written by Wei-Chau Xie and published by Cambridge University Press. This book was released on 2010-04-26 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

Book Dynamics of Controlled Mechanical Systems with Delayed Feedback

Download or read book Dynamics of Controlled Mechanical Systems with Delayed Feedback written by H.Y. Hu and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed a rapid development of active control of various mechanical systems. With increasingly strict requirements for control speed and system performance, the unavoidable time delays in both controllers and actuators have become a serious problem. For instance, all digital controllers, analogue anti aliasing and reconstruction filters exhibit a certain time delay during operation, and the hydraulic actuators and human being interaction usually show even more significant time delays. These time delays, albeit very short in most cases, often deteriorate the control performance or even cause the instability of the system, be cause the actuators may feed energy at the moment when the system does not need it. Thus, the effect of time delays on the system performance has drawn much at tention in the design of robots, active vehicle suspensions, active tendons for tall buildings, as well as the controlled vibro-impact systems. On the other hand, the properly designed delay control may improve the performance of dynamic sys tems. For instance, the delayed state feedback has found its applications to the design of dynamic absorbers, the linearization of nonlinear systems, the control of chaotic oscillators, etc. Most controlled mechanical systems with time delays can be modeled as the dynamic systems described by a set of ordinary differential equations with time delays.

Book Mechanical Systems

Download or read book Mechanical Systems written by Roger F. Gans and published by Springer. This book was released on 2014-09-02 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This essential textbook concerns analysis and control of engineering mechanisms, which includes almost any apparatus with moving parts used in daily life, from musical instruments to robots. A particular characteristic of this book is that it presents with considerable breadth and rigor both vibrations and controls. Many contemporary texts combine both of these topics in a single, one term course. This text supports the more favorable circumstance where the material is covered in a one year sequence contains enough material for a two semester sequence, but it can also be used in a single semester course combining two topics. “Mechanical Systems: A Unified Approach to Vibrations and Controls” presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text.

Book Engineering Differential Equations

Download or read book Engineering Differential Equations written by Bill Goodwine and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.

Book Ordinary Differential Equations and Dynamical Systems

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2012-08-30 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Book Real Time Integration Methods for Mechanical System Simulation

Download or read book Real Time Integration Methods for Mechanical System Simulation written by Edward J. Haug and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the edited versions of lectures and selected contributed papers presented at the NATO Advanced Research Workshop on Real-Time Integration Methods For Mechanical System Simulation, held in Snowbird, Utah, August 7-11, 1989. The Institute was attended by 42 participants from 9 countries, including leading mathematicians and engineers from universities, research institutions, and industry. The majority of participants presented either invited or contributed papers during the Institute, and everyone participated in lively discussions on scientific aspects of the program. The Workshop provided a forum for investigation of promising new directions for solution of differential-algebraic equations (DAE) of mechanical system dynamics by mathematicians and engineers from numerous schools of thought. The Workshop addressed needs and opportunities for new methods of solving of DAE of mechanical system dynamics, from the perspective of a broad range of engineering and scientific applications. Among the most exciting new applications addressed was real time computer simulation of mechanical systems that, for the first time in human history, permits operator-in-the-Ioop simulation of equipment that is controlled by the human; e.g., driving a vehicle, operating a space telerobot, operating a remote manipulator, and operating construction equipment. The enormous potential value of this new application and the fact that real-time numerical integration methods for DAE of mechanical system dynamics is the pacing problem to be solved in realizing this potential served to focus much of the discussion at the Workshop.

Book Introduction to Differential Equations with Dynamical Systems

Download or read book Introduction to Differential Equations with Dynamical Systems written by Stephen L. Campbell and published by Princeton University Press. This book was released on 2011-10-14 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2016-08-05 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.

Book Solving Ordinary Differential Equations II

Download or read book Solving Ordinary Differential Equations II written by Ernst Hairer and published by Springer. This book was released on 2010-03-10 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY

Book Methods of Mathematical Modelling

Download or read book Methods of Mathematical Modelling written by Thomas Witelski and published by Springer. This book was released on 2015-09-18 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

Book Inverse dynamics of underactuated flexible mechanical systems governed by quasi linear hyperbolic partial differential equations

Download or read book Inverse dynamics of underactuated flexible mechanical systems governed by quasi linear hyperbolic partial differential equations written by Ströhle, Timo and published by KIT Scientific Publishing. This book was released on 2024-02-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is about the inverse dynamics of underactuated flexible mechanical systems governed by quasi-linear hyperbolic partial differential equations subjected to time-varying Dirichlet boundary conditions that are enforced by unknown, spatially disjunct, hence non-collocated Neumann boundary conditions.

Book Integrable Mechanical Systems

Download or read book Integrable Mechanical Systems written by Róbert Hermann and published by Math Science Press. This book was released on 1984 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lie Theoretic Ode Numerical Analysis  Mechanics and Differential Systems

Download or read book Lie Theoretic Ode Numerical Analysis Mechanics and Differential Systems written by Robert Hermann and published by Math-Sci Press. This book was released on 1994 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ordinary Differential Equations with Applications to Mechanics

Download or read book Ordinary Differential Equations with Applications to Mechanics written by Mircea Soare and published by Springer. This book was released on 2009-09-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

Book Differential Equations

Download or read book Differential Equations written by Bruce P. Conrad and published by . This book was released on 2003 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for beginners, this well organized introduction promotes a solid understanding of differential equations that is flexible enough to meet the needs of many different disciplines. With less emphasis on formal calculation than found in other books all the basic methods are covered—first order equations, separation, exact form, and linear equations—as well as higher order cases, linear equation with constant and variable coefficients, Laplace transform methods, and boundary value problems. The book'ssystems focus induces an intuitive understanding of the concept of a solution of an initial value problem in order to resolve potential confusion about what is being approximated when a numerical method is used. The author outlines first order equations including linear and nonlinear equations and systems of differential equations, as well as linear differential equations including the Laplace transform, and variable coefficients, nonlinear differential equations, and boundary problems and PDEs. For those looking for a solid introduction to differential equations.

Book Differential Equations

    Book Details:
  • Author : Grady Manney
  • Publisher :
  • Release : 2021-04
  • ISBN :
  • Pages : 158 pages

Download or read book Differential Equations written by Grady Manney and published by . This book was released on 2021-04 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies a step-by-step treatment of the current state-of-the-art ordinary differential equations used in modeling engineering systems/processes and beyond. Physical phenomena such as the movement of an object can be expressed by differential equations. For example, the speed, acceleration, etc. studied in physics. It is used to express the value that changes with the passage of time in the engineering system. In this book, let's study differential equations while showing phenomena such as electrical circuits as examples.