Download or read book Motion Planning in Medicine Optimization and Simulation Algorithms for Image Guided Procedures written by Ron Alterovitz and published by Springer Science & Business Media. This book was released on 2008-07-23 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by Ron Alterovitz and Ken Goldberg, this monograph combines ideas from robotics, physically-based modeling, and operations research to develop new motion planning and optimization algorithms for image-guided medical procedures.
Download or read book Modern Robotics written by Kevin M. Lynch and published by Cambridge University Press. This book was released on 2017-05-25 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Download or read book ICT Innovations 2013 written by Vladimir Trajkovik and published by Springer Science & Business Media. This book was released on 2013-07-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information communication technologies have become the necessity in everyday life enabling increased level of communication, processing and information exchange to extent that one could not imagine only a decade ago. Innovations in these technologies open new fields in areas such as: language processing, biology, medicine, robotics, security, urban planning, networking, governance and many others. The applications of these innovations are used to define services that not only ease, but also increase the quality of life. Good education is essential for establishing solid basis of individual development and performance. ICT is integrated part of education at every level and type. Therefore, the special focus should be given to possible deployment of the novel technologies in order to achieve educational paradigms adapted to possible educational consumer specific and individual needs. This book offers a collection of papers presented at the Fifth International Conference on ICT Innovations held in September 2013, in Ohrid, Macedonia. The conference gathered academics, professionals and practitioners in developing solutions and systems in the industrial and business arena especially innovative commercial implementations, novel applications of technology, and experience in applying recent ICT research advances to practical solutions.
Download or read book Optimization of Motion Planning and Control for Automatic Machines Robots and Multibody Systems written by Paolo Boscariol and published by . This book was released on 2020-09-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.
Download or read book Algorithmic Foundations of Robotics V written by Jean-Daniel Boissonnat and published by Springer Science & Business Media. This book was released on 2003-09-11 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.
Download or read book Repetitive Motion Planning and Control of Redundant Robot Manipulators written by Yunong Zhang and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.
Download or read book Optimized Motion Planning written by Cherif Ahrikencheikh and published by Wiley-Interscience. This book was released on 1994-10-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first handbook to the practical specifics of motion planning, Optimized-Motion Planning offers design engineers methods and insights for solving real motion planning problems in a 3-dimensional space. Complete with a disk of software programs, this unique guide allows users to design, test, and implement possible solutions, useful in a host of contexts, especially tool path planning. Beginning with a brief overview of the general class of problems examined within the book as well as available solution techniques, Part 1 familiarizes the reader with the conceptual threads that underlie each approach. This early discussion also considers the specific applications of each technique as well as its computational efficiency. Part 2 illustrates basic problem-solving methodology by considering the case of a point moving between stationary polygons in a plane. This section features algorithms for data organization and storage, the concepts of passage networks and feasibility charts, as well as the path optimization algorithm. Elaborating on the problematic model described in Part 2, Part 3 develops an algorithm for optimizing the motion of a point between stationary polyhedra in a 3-dimensional space. This algorithm is first applied to the case of nonpoint objects moving between obstacles that can be stationary or moving with known patterns. It's then used in connection with the extensively investigated problem of motion planning for multilink manipulators.
Download or read book The Complexity of Robot Motion Planning written by John Canny and published by MIT Press. This book was released on 1988 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.
Download or read book Robot Motion Planning and Control written by Jean-Paul Laumond and published by Springer. This book was released on 1998 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content Description #Includes bibliographical references.
Download or read book Geometric and Numerical Foundations of Movements written by Jean-Paul Laumond and published by Springer. This book was released on 2017-05-02 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.
Download or read book Robotics Research written by Antonio Bicchi and published by Springer. This book was released on 2017-07-24 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the seventeenth edition of "Robotics Research" ISRR15, offering a collection of a broad range of topics in robotics. The content of the contributions provides a wide coverage of the current state of robotics research.: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.
Download or read book Robot Motion Planning written by Jean-Claude Latombe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.
Download or read book Network Theory for Efficient Optimized Motion Planning written by Cherif Ahrikencheikh and published by . This book was released on 1993 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algorithmic Foundations of Robotics X written by Emilio Frazzoli and published by Springer. This book was released on 2013-02-14 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 2012 at the Massachusetts Institute of Technology. The 37 papers included in this book cover a broad range of topics, from fundamental theoretical issues in robot motion planning, control, and perception, to novel applications.
Download or read book Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments written by Kristoffer Bergman and published by Linköping University Electronic Press. This book was released on 2021-03-16 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. The objective in optimal motion planning problems is to find feasible motion plans that also optimize a performance measure. From a control perspective, the problem is an instance of an optimal control problem. This thesis addresses optimal motion planning problems for complex dynamical systems that operate in unstructured environments, where no prior reference such as road-lane information is available. Some example scenarios are autonomous docking of vessels in harbors and autonomous parking of self-driving tractor-trailer vehicles at loading sites. The focus is to develop optimal motion planning algorithms that can reliably be applied to these types of problems. This is achieved by combining recent ideas from automatic control, numerical optimization and robotics. The first contribution is a systematic approach for computing local solutions to motion planning problems in challenging unstructured environments. The solutions are computed by combining homotopy methods and direct optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms a state-of-the-art asymptotically optimal motion planner based on random sampling. The second contribution is an optimization-based framework for automatic generation of motion primitives for lattice-based motion planners. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the framework computes a library of motion primitives by simultaneously optimizing the motions and the terminal states. The final contribution of this thesis is a motion planning framework that combines the strengths of sampling-based planners with direct optimal control in a novel way. The sampling-based planner is applied to the problem in a first step using a discretized search space, where the system dynamics and objective function are chosen to coincide with those used in a second step based on optimal control. This combination ensures that the sampling-based motion planner provides a feasible motion plan which is highly suitable as warm-start to the optimal control step. Furthermore, the second step is modified such that it also can be applied in a receding-horizon fashion, where the proposed combination of methods is used to provide theoretical guarantees in terms of recursive feasibility, worst-case objective function value and convergence to the terminal state. The proposed motion planning framework is successfully applied to several problems in challenging unstructured environments for tractor-trailer vehicles. The framework is also applied and tailored for maritime navigation for vessels in archipelagos and harbors, where it is able to compute energy-efficient trajectories which complies with the international regulations for preventing collisions at sea.
Download or read book On Motion Planning Using Numerical Optimal Control written by Kristoffer Bergman and published by Linköping University Electronic Press. This book was released on 2019-05-28 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. In this thesis, the objective is not only to find feasible solutions to a motion planning problem, but solutions that also optimize some kind of performance measure. From a control perspective, the resulting problem is an instance of an optimal control problem. In this thesis, the focus is to further develop optimal control algorithms such that they be can used to obtain improved solutions to motion planning problems. This is achieved by combining ideas from automatic control, numerical optimization and robotics. First, a systematic approach for computing local solutions to motion planning problems in challenging environments is presented. The solutions are computed by combining homotopy methods and numerical optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms both a state-of-the-art numerical optimal control method based on standard initialization strategies and a state-of-the-art optimizing sampling-based planner based on random sampling. Second, a framework for automatically generating motion primitives for lattice-based motion planners is proposed. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the algorithm not only automatically optimizes the motions connecting pre-defined boundary conditions, but also simultaneously optimizes the terminal state constraints as well. In addition to handling static a priori known system parameters such as platform dimensions, the framework also allows for fast automatic re-optimization of motion primitives if the system parameters change while the system is in use. Furthermore, the proposed framework is extended to also allow for an optimization of discretization parameters, that are are used by the lattice-based motion planner to define a state-space discretization. This enables an optimized selection of these parameters for a specific system instance. Finally, a unified optimization-based path planning approach to efficiently compute locally optimal solutions to advanced path planning problems is presented. The main idea is to combine the strengths of sampling-based path planners and numerical optimal control. The lattice-based path planner is applied to the problem in a first step using a discretized search space, where system dynamics and objective function are chosen to coincide with those used in a second numerical optimal control step. This novel tight combination of a sampling-based path planner and numerical optimal control makes, in a structured way, benefit of the former method’s ability to solve combinatorial parts of the problem and the latter method’s ability to obtain locally optimal solutions not constrained to a discretized search space. The proposed approach is shown in several practically relevant path planning problems to provide improvements in terms of computation time, numerical reliability, and objective function value.