EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimization of Process Parameters for Faster Deposition of CuIn1x  Gax  S2 and CuIn1x  Gax  Se2   y  Sy   Thin Film Solar Cells

Download or read book Optimization of Process Parameters for Faster Deposition of CuIn1x Gax S2 and CuIn1x Gax Se2 y Sy Thin Film Solar Cells written by Ashwani Kaul and published by . This book was released on 2012 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film solar cells have the potential to be an important contributor to the world energy demand in the 21st century. Among all the thin film technologies, CuInGaSe2 (CIGS) thin film solar cells have achieved the highest efficiency. However, the high price of photovoltaic (PV) modules has been a major factor impeding their growth for terrestrial applications. Reduction in cost of PV modules can be realized by several ways including choosing scalable processes amenable to large area deposition, reduction in the materials consumption of active layers, and attaining faster deposition rates suitable for in-line processing. Selenization-sulfurization of sputtered metallic Cu-In-Ga precursors is known to be more amenable to large area deposition. Sputter-deposited molybdenum thin film is commonly employed as a back contact layer for CIGS solar cells. However, there are several difficulties in fabricating an optimum back contact layer. It is known that molybdenum thin films deposited at higher sputtering power and lower gas pressure exhibit better electrical conductivity. However, such films exhibit poor adhesion to the soda-lime glass substrate. On the other hand, films deposited at lower discharge power and higher pressure although exhibit excellent adhesion show lower electrical conductivity. Therefore, a multilayer structure is normally used so as to get best from the two deposition regimes. A multi-pass processing is not desirable in high volume production because it prolongs total production time and correspondingly increases the manufacturing cost. In order to make manufacturing compliant with an in-line deposition, it is justifiable having fewer deposition sequences. Thorough analysis of pressure and power relationship of film properties deposited at various parameters has been carried out. It has been shown that it is possible to achieve a molybdenum back contact of desired properties in a single deposition pass by choosing the optimum deposition parameters. It is also shown that the film deposited in a single pass is actually a composite structure. CIGS solar cells have successfully been completed on the developed single layer back contact with National Renewable Energy Laboratory (NREL) certified device efficiencies [greater than]11%. The optimization of parameters has been carried out in such a way that the deposition of back contact and metallic precursors can be carried out in identical pressure conditions which is essential for in-line deposition without a need for load-lock. It is know that the presence of sodium plays a very critical role during the growth of CIGS absorber layer and is beneficial for the optimum device performance. The effect of sodium location during the growth of the absorber layer has been studied so as to optimize its quantity and location in order to get devices with improved performance. NREL certified devices with efficiencies [greater than]12% have been successfully completed.

Book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions

Download or read book Optimisation of Cu In Ga Se 1tn2 Thin Film Solar Cells and Modules for Low Irradiance Conditions written by Alessandro Virtuani and published by . This book was released on 2004 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solution Processing for Copper Indium Sulfide Solar Cells

Download or read book Solution Processing for Copper Indium Sulfide Solar Cells written by Stephen Thacker Connor and published by Stanford University. This book was released on 2011 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the field of photovoltaics has become increasingly important due to rising energy demand and climate change. While most solar cells are currently composed of crystalline silicon, devices with thinner films of inorganic absorber materials might allow production at a greater scale due to their lower materials cost. In particular, thin films of CuInS2 are promising solar absorber materials due to their high efficiencies and low required thicknesses. However, the fabrication of thin film solar cells currently requires expensive vacuum techniques. As an alternative, solution-based deposition techniques have been proposed as a route to low-cost and high-throughput electronic device fabrication. I have studied how film growth depends on solutuion deposited precursor film quality, with the goal of producing large grained films of CuInS2 through solution processing. In the first approach, we used solvothermal decomposition of organometallic precursors at moderate temperatures to produce nanoparticles of CuInS2. Thin films of these nanoparticles were cast onto molybdenum coated glass and further processed to create CuInS2 solar cells. We found that performance was dependent on film porosity, grain size, and stoichiometry of the nanoparticles. Films with grain sizes of ~200nm were attained, from which 1.3% efficient solar cells were made. In addition, we showed that this synthesis could be extended to produce CuInS2 nanoparticles with partial substitution of Fe, Zn, and Ga. In the second approach, we synthesized an air-stable hybrid organometallic/nanoparticle ink at room temperature in ambient conditions through a vulcanization reaction. This ink could be coated onto substrates in smooth layers, and further reactive annealing formed large grained CuInS2 films. This process was characterized, and a correlation between residual carbon and grain growth was found. Additionally, the chemical transformation between precursor layers and final sulfide thin film was analyzed, with an emphasis on the difference between sulfurization and selenization. We demonstrated that the sulfurization process was producing morphological defects due to its nucleation limited growth mechanism. However, it was modified to more closely resemble the diffusion limited selenization mechanism, thus producing flat films of CuInS2 with grain sizes of ~500nm.

Book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells

Download or read book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells written by Peipei Xin and published by . This book was released on 2017 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. ☐ This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. ☐ First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. ☐ Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. ☐ Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options – CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

Book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells

Download or read book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells written by Zhenhao Zhang and published by KIT Scientific Publishing. This book was released on 2014-10-16 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distribution of the electrostatic potential in and between the materials in Cu(In,Ga)Se2 thin-film solar cells has a major impact on their superior performance. This thesis reported on the nanoscale imaging of the electrostatic potential on untreated cross sections of operating Cu(In,Ga)Se2 solar cells using Kelvin probe force microscopy.

Book Improvement of Cu In Ga   S Se 2 Thin Film Solar Cells with the Help of Gallium and Sulfur Gradients

Download or read book Improvement of Cu In Ga S Se 2 Thin Film Solar Cells with the Help of Gallium and Sulfur Gradients written by Björn Jakob Müller and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Solar Cells Performances Optimization

Download or read book Thin Film Solar Cells Performances Optimization written by Fridolin Tchangnwa Nya and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this chapter, we investigate a way of improving solar cells performances. By focusing studies on optimizing the structural, the opto-electrical and electronic properties of materials that constitute the layers and interfaces of a solar device, such as electrical susceptibility, doping concentration, mobility of charge carriers and crystallographic structure, it is possible to improve the output parameters of a solar cell. Working on a CIGSe-based second-generation ultra-thin solar cell model, and using Zinc Sulfide (ZnS) as a window layer, and based on recent studies, vital information are found on the optimal values of these properties that may enhance the efficiency of the cell. A correct modeling of the device with a trusted software such as SCAPS and an appropriate set of the exact conditions and parameters of simulation allow to obtain very promising results. In particular, for nanoscale and microscale thicknesses of buffer and absorber layers materials respectively, and with an appropriate choice of other materials properties such as intrinsic doping concentration, electrons and holes mobilities, it is possible to record efficiencies and fill factors of more than 26% and 85% respectively. These values are very promising for solar energy harvesting technologies development through CIGSe ,Äì ZnS based solar devices.

Book New Deposition Process of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book New Deposition Process of Cu In Ga Se2 Thin Films for Solar Cell Applications written by Himal Khatri and published by . This book was released on 2009 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molybdenum (Mo) is currently the most common material used for Cu(In, Ga)Se2 solar cell back contacts. The first objective of this study is to utilize in-situ and ex-situ characterization techniques to investigate the growth, as well as the physical and chemical properties, of Mo thin films deposited by RF magnetron sputtering onto soda-lime glass (SLG) substrates. The effects of the deposition pressure on the nucleation and growth mechanisms that ultimately influence morphology and grain structure have been studied. Correspondence between real time spectroscopic ellipsometry (RTSE), X-ray diffraction (XRD), atomic force microscopy (AFM), and four-point probe resistivity measurements indicate that increasing deposition pressure leads to smaller average grain sizes and higher oxygen content in the Mo thin films. Changes of the material properties were also evaluated by changing RF power. It is observed that higher RF power, results in higher conductivity films. The second and overall objective of this work is to focus on the deposition and characterization of the Cu(In, Ga)Se2 absorber layer using the hybrid co-sputtering and evaporation process, which has potential for commercial PV. Solar cells were completed with a range of elemental compositions in the absorber layer, keeping a constant profile of Ga and varying Cu concentrations. The slightly Cu deficient Cu(In, Ga)Se2 films of band gap ~1.15 eV fabricated by this process consist of a single chalcopyrite phase and device efficiencies up to 12.4% were achieved for the composition ratios (x, y) = (0.30, 0.88). Correspondence between energy dispersive X-ray spectroscopy (EDS), X-ray diffraction, transmission and reflection (T & R), four-point probe resistivity, and current density-voltage (J-V) measurements indicate that increased Cu concentration leads to the incorporation of a secondary phase Cu2-xSe compound in the Cu(In, Ga)Se2 films, which is detrimental to cell performance. The third objective of this work is to evaluate the Cu2-xSe material properties by employing in-situ RTSE, as well as ex-situ SE and various other characterization techniques. SE revealed that the dielectric function spectra of Cu2-xSe evolve with temperature, providing insights into the evolution of transport properties and critical point structures. At room temperature, semi-metallic behavior of Cu2-xSe thin films was revealed by SE and Hall Effect measurements. These characteristics serve as key inputs for optical modeling of complex layer structures of Cu(In, Ga)Se2 films grown by 2- and 3-step processes.

Book Development of Cu In Ga Se2 Solar Cell on Stainless Steel Substrate

Download or read book Development of Cu In Ga Se2 Solar Cell on Stainless Steel Substrate written by Chantana Jakapan and published by LAP Lambert Academic Publishing. This book was released on 2015-07-03 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electricity power is normally generated by burning fossil fuels, having detrimental impacts on the environment and will be depleted. One of the most appropriate ways to solve the foreseeable world's energy crisis is to utilize the power of the sun. Solar cells, using photovoltaic effect, are of wide interest as they can convert solar energy to electricity. Chalcopyrite based thin-film solar cell is considered as the low-cost and high-efficiency solar cells. One of the most important chalcopyrite compounds for photovoltaic application is Cu(In, Ga)Se2. Fabricating the solar cells on flexible substrates is intriguing, as it can be applied to the roll-to-roll process with the ability to reduce production cost of the solar cells. Consequently, the purpose of the book is to provide the overview for accomplishing the good physical properties and suitable double [Ga]/([Ga]+[In])-grading profiles of Cu(In, Ga)Se2 absorbers on flexible stainless steel substrates for the thin-film solar cells with high conversion efficiency (>15%

Book Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells

Download or read book Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells written by Shirish A. Pethe and published by . This book was released on 2010 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: With further optimization of the reaction process of the absorber layer as well as the other layers higher efficiencies can be achieved. The effect of sodium on the device performance is experimentally verified in this work. To the best of our knowledge the detrimental effect of excess sodium has been verified by experimental data and effort has been made to correlate the variation in PV parameter to theoretical models of effect of sodium. It has been a regular practice to deposit thin barrier layer prior to molybdenum deposition to reduce the micrononuniformities caused due to nonuniform out diffusion of sodium from the soda lime glass. However, it was proven in this work that an optimally thick barrier layer is necessary to reduce the out diffusion of sodium to negligible quantities and thus reduce the micrononuniformities. Molybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. During the course of this work efforts were taken to carry out a systematic and detailed study of some of the fundamental issues related to CIGS technology and particular for high volume manufacturing of CIGS PV modules and lay a good foundation for further improvement of PV performance of CIGS thin film solar cells prepared by the two step process of selenization and sulfurization of sputtered metallic precursors.

Book Preparation of High Efficiency Cu2ZnSn S  Se 4solar Cells Based on a Single step Sulfo selenization Process

Download or read book Preparation of High Efficiency Cu2ZnSn S Se 4solar Cells Based on a Single step Sulfo selenization Process written by Haibing Xie and published by . This book was released on 2016 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu2ZnSn(S, Se)4 (CZTSSe) kesterite semiconductors have been proposed as a potential medium to long term replacement of Cu(In, Ga)(S, Se)2 (CIGS) chalcopyrites for sustainable cost-efficient thin film technologies compatible with mass deployment at Terawatt level, being only constituted by elements abundant in the earth crust in contrast with the scarce Indium in CIGS. In this thesis, high efficiency CZTSSe solar cells were fabricated based on a single-step sulfo-selenization process. CZTSSe absorbers with optimal S/(S+Se) ratio, minimized Zn(S, Se) secondary phases in the interfaces, and good crystal quality were achieved through systematically fine tuning of various processing parameters during thermal treatments. The thermodynamic equilibrium of the single-step sulfo-selenization process was also analysed to elucidate the impact of different parameters on the thin films S/(S+Se) ratio. Besides, to address the big challenge of secondary phases in CZTSSe solar cells, an innovative (NH4)2S etching was developed for the selective and effective removal of Sn-(S, Se) secondary phases. This (NH4)2S etching can also passivate the absorber surface and a passivation mechanism was proposed to explain this behaviour. To further improve the efficiency of the CZTSSe solar cells, the CZTSSe/CdS interface was focused and engineered. Na spatial distribution in the CZTSSe/CdS interface region was optimized by a post low temperature treatment process (PLTT), leading to considerable enhancement of the performance of CZTSSe solar cells. An innovative Na dynamics model was established to illustrate the Na in-depth profiles. In addition, Cu doped CdS was investigated to reduce the thickness of CdS while keeping the comparable performance of the kesterite devices, which provides new possibilities to address the Cd concern. Finally, to suppress the CZTSSe/CdS interface recombination and reduce the Voc deficit of the CZTSSe solar cells, a facile wet chemical route based on AlCl3/GaCl3 + thioacetamide solutions were developed. The Voc and efficiency improvement after the chemical treatments can be mainly ascribed to the decrease of interface recombination and shunt paths. A champion CZTSSe solar cell with 9.1% efficiency and FF over 69% was achieved after all these processing optimizations (no ARC). This demonstrates that the single-step sulfo-selenization methodology is promising and feasible for obtaining high efficiency CZTSSe solar cells. selenization methodology is promising and feasible for obtaining high efficiency CZTSSe solar cells.

Book Chalcogenide Photovoltaics

Download or read book Chalcogenide Photovoltaics written by Roland Scheer and published by John Wiley & Sons. This book was released on 2011-03-31 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first comprehensive description of the most important material properties and device aspects closes the gap between general books on solar cells and journal articles on chalcogenide-based photovoltaics. Written by two very renowned authors with years of practical experience in the field, the book covers II-VI and I-III-VI2 materials as well as energy conversion at heterojunctions. It also discusses the latest semiconductor heterojunction models and presents modern analysis concepts. Thin film technology is explained with an emphasis on current and future techniques for mass production, and the book closes with a compendium of failure analysis in photovoltaic thin film modules. With its overview of the semiconductor physics and technology needed, this practical book is ideal for students, researchers, and manufacturers, as well as for the growing number of engineers and researchers working in companies and institutes on chalcogenide photovoltaics.