EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Large Scale Inverse Problems and Quantification of Uncertainty

Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Book Optimal Design of Experiments

Download or read book Optimal Design of Experiments written by Friedrich Pukelsheim and published by SIAM. This book was released on 2006-04-01 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.

Book Simulation and Optimization in Process Engineering

Download or read book Simulation and Optimization in Process Engineering written by Michael Bortz and published by Elsevier. This book was released on 2022-04-16 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation and Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the Process Industry brings together examples where the successful transfer of progress made in mathematical simulation and optimization has led to innovations in an industrial context that created substantial benefit. Containing introductory accounts on scientific progress in the most relevant topics of process engineering (substance properties, simulation, optimization, optimal control and real time optimization), the examples included illustrate how such scientific progress has been transferred to innovations that delivered a measurable impact, covering details of the methods used, and more. With each chapter bringing together expertise from academia and industry, this book is the first of its kind, providing demonstratable insights. - Recent mathematical methods are transformed into industrially relevant innovations. - Covers recent progress in mathematical simulation and optimization in a process engineering context with chapters written by experts from both academia and industry - Provides insight into challenges in industry aiming for a digitized world.

Book Numerical Analysis and Optimization

Download or read book Numerical Analysis and Optimization written by Mehiddin Al-Baali and published by Springer. This book was released on 2015-07-16 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, algorithms and software developments, derivative free optimization methods and programming models. The volume also examines challenging applications to various types of computational optimization methods which usually occur in statistics, econometrics, finance, physics, medicine, biology, engineering and industrial sciences.

Book Advances in Geophysics

Download or read book Advances in Geophysics written by and published by Academic Press. This book was released on 2017-12-15 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Geophysics, Volume 58, the latest in this critically acclaimed serialized review journal that has published for over 50 years, contains the latest information available in the field. Users will find valuable chapters highlighting the Novel use of geodynamics in plate tectonic reconstruction, and on Optimized experimental design in the context of seismic full waveform inversion and seismic imaging. Since 1952, each volume in this series has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 58th volume, it is truly an essential publication for researchers in all fields of geophysics. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Essential publication for researchers in all fields of geophysics

Book High Performance Computing for Computational Science     VECPAR 2016

Download or read book High Performance Computing for Computational Science VECPAR 2016 written by Inês Dutra and published by Springer. This book was released on 2017-07-13 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 12fth International Conference on High Performance Computing in Computational Science, VECPAR 2016, held in Porto, Portugal, in June 2016. The 20 full papers presented were carefully reviewed and selected from 36 submissions. The papers are organized in topical sections on applications; performance modeling and analysis; low level support; environments/libraries to support parallelization.

Book Bayesian Approach to Inverse Problems

Download or read book Bayesian Approach to Inverse Problems written by Jérôme Idier and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Book Computational Methods for Inverse Problems

Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Book Variational Methods

    Book Details:
  • Author : Maïtine Bergounioux
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2017-01-11
  • ISBN : 3110430398
  • Pages : 540 pages

Download or read book Variational Methods written by Maïtine Bergounioux and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-01-11 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index

Book Assessing the Reliability of Complex Models

Download or read book Assessing the Reliability of Complex Models written by National Research Council and published by National Academies Press. This book was released on 2012-07-26 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computing hardware and algorithms have dramatically improved the ability to simulate complex processes computationally. Today's simulation capabilities offer the prospect of addressing questions that in the past could be addressed only by resource-intensive experimentation, if at all. Assessing the Reliability of Complex Models recognizes the ubiquity of uncertainty in computational estimates of reality and the necessity for its quantification. As computational science and engineering have matured, the process of quantifying or bounding uncertainties in a computational estimate of a physical quality of interest has evolved into a small set of interdependent tasks: verification, validation, and uncertainty of quantification (VVUQ). In recognition of the increasing importance of computational simulation and the increasing need to assess uncertainties in computational results, the National Research Council was asked to study the mathematical foundations of VVUQ and to recommend steps that will ultimately lead to improved processes. Assessing the Reliability of Complex Models discusses changes in education of professionals and dissemination of information that should enhance the ability of future VVUQ practitioners to improve and properly apply VVUQ methodologies to difficult problems, enhance the ability of VVUQ customers to understand VVUQ results and use them to make informed decisions, and enhance the ability of all VVUQ stakeholders to communicate with each other. This report is an essential resource for all decision and policy makers in the field, students, stakeholders, UQ experts, and VVUQ educators and practitioners.

Book Foundations of Optimum Experimental Design

Download or read book Foundations of Optimum Experimental Design written by Andrej Pázman and published by Springer. This book was released on 1986-01-31 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory remarks about the experiment and its disign. The regression model and methods of estimation. The ordering of designs and the properties of variaces of estimates. Optimality critaria in the regression model. Iterative computation of optimum desings Design of experiments in particular cases. The functional model and measurements of physical fields.

Book Handbook of Dynamic Data Driven Applications Systems

Download or read book Handbook of Dynamic Data Driven Applications Systems written by Frederica Darema and published by Springer Nature. This book was released on 2023-10-16 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).

Book Computational Challenges in the Geosciences

Download or read book Computational Challenges in the Geosciences written by Clint Dawson and published by Springer Science & Business Media. This book was released on 2013-09-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Challenges in the Geosciences addresses a cross-section of grand challenge problems arising in geoscience applications, including groundwater and petroleum reservoir simulation, hurricane storm surge, oceanography, volcanic eruptions and landslides, and tsunamis. Each of these applications gives rise to complex physical and mathematical models spanning multiple space-time scales, which can only be studied through computer simulation. The data required by the models is often highly uncertain, and the numerical solution of the models requires sophisticated algorithms which are mathematically accurate, computationally efficient and yet must preserve basic physical properties of the models. This volume summarizes current methodologies and future research challenges in this broad and important field.

Book Geophysics Today

    Book Details:
  • Author : Sergey Fomel
  • Publisher : SEG Books
  • Release : 2010
  • ISBN : 156080226X
  • Pages : 543 pages

Download or read book Geophysics Today written by Sergey Fomel and published by SEG Books. This book was released on 2010 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a collection of papers which appear in the September-October 2010 Geophysics special section, written by recognised experts in various areas of exploration geophysics, plus an additional group of papers drawn from Geophysics which address areas beyond those invited articles. The result is a snapshot of the state-of-the-art in the field.

Book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

Book The Design and Analysis of Computer Experiments

Download or read book The Design and Analysis of Computer Experiments written by Thomas J. Santner and published by Springer. This book was released on 2019-01-08 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.