EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals and Applications of Supercritical Carbon Dioxide  SCO2  Based Power Cycles

Download or read book Fundamentals and Applications of Supercritical Carbon Dioxide SCO2 Based Power Cycles written by Klaus Brun and published by Woodhead Publishing. This book was released on 2017-01-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. Represents the first book to focus exclusively on SC02 power cycles Contains detailed coverage of cycle fundamentals, key components, and design challenges Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Book Thermoeconomic and Optimization Analysis of Advanced Supercritical Carbon Dioxide Power Cycles in Concentrated Solar Power Application

Download or read book Thermoeconomic and Optimization Analysis of Advanced Supercritical Carbon Dioxide Power Cycles in Concentrated Solar Power Application written by Ali Sulaiman H. Alsagri and published by . This book was released on 2018 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various supercritical CO2 Brayton cycles were subjected to energy and exergy analysis for the purpose of improving calculation accuracy; the feasibility of the cycles; and compare the cycles' design points. With respect to improving the accuracy of the analytical model, a computationally efficient technique using constant conductance (UA) to represent heat exchanger performances. Three parametric analysis were conducted: total conductance, maximum and minimum operating temperature, and pressure ratio for appropriate optimization. Recompression sCO2 Brayton cycle based on three parametric analysis achieves the highest thermal efficiency and power output at different operating condition. Also, the findings show that the simple recuperated sCO2 Brayton cycle has the highest specific power output in spite of its simplicity. Then a novel combined power cycle based on the recompression configuration were proposed for the purpose of improving overall thermal efficiency of power cycles by attempting to minimize thermodynamic irreversibilities and waste heat as a consequence of the Second Law. The power cycle concept comprises an advanced recompression sCO2 Brayton configuration as a topping cycle and a split flow tCO2 Rankine configuration as a bottoming cycle. The topping sCO2 recompression Brayton cycle used a combustion chamber as a heat source, and waste heat from a topping cycle was recovered by the tCO2 Rankine cycle due to an added high efficiency recuperator for generating electricity. The combined cycle configurations were thermodynamically modeled and optimized using an Engineering Equation Solver (EES) software. Single and multi-objective optimization techniques conducted in this research is developed using a genetic algorithm (GA). The findings show that the higher thermal efficiency was obtained with recompression sCO2 Brayton cycle-split flow tCO2 Rankine cycle. Also, the results show that the combined sCO2 cycles is practical and promising technology compared to conventional cycles. To produce an ecologically justifiable energy along with cost-competitive, concentrated solar power tower plant model is conducted. The aim of concentrated solar power (CSP) system modeling was to assess the system viability in a location of moderate-to-high solar availability. A case study is presented of a city in Saudi Arabia. To achieve the highest energy production per unit cost, the heliostat geometry and thermal energy storage (TES) dispatch are optimized. Solar power tower (SPT) is one design of CSP technology that is of particular interest here because it can operate at relatively high temperatures. The present SPT-TES field comprises heliostat mirrors, a tower, a receiver, heat exchangers, and two molten-salt TES tanks. The main economic indicators are the capacity factor and the levelized cost of electricity (LCOE). The findings indicate that SPT-TES with sCO2 power cycles is economically viable. The results also show that integrating TES with an SPT has a strong positive impact on the capacity factor at the optimum LCOE.

Book Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression

Download or read book Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression written by and published by . This book was released on 2014 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercritical carbon dioxide (SCO2) power cycles show promise for a wide range of applications, such as concentrating solar power, next-generation nuclear reactors, and waste-heat recovery. Models capable of predicting the design-point, off-design, and part-load performance of SCO2 power cycles are necessary for evaluating cycle designs. These models should be flexible in order to accommodate the range of designs under consideration and computationally efficient in order to enable timely optimization studies, possibly while considering cycle performance on an annual or life-cycle basis. This document reports on the development of a modeling framework that accommodates these requirements and is capable of predicting the performance of recuperated and recompression cycle configurations. The modeling framework is in Fortran and is flexible with respect to component-level specifics, such as the type of compressor used in the cycle or the method used to represent the off-design performance of the turbine. Optimization routines are integrated into the models, allowing exploration of optimal component and system designs or optimal operating strategies for a given system design. The optimal design-point and off-design performance of various cycle designs is predicted using turbomachinery models based on the radial compressors and turbines that are currently being investigated by Sandia National Laboratory for use in SCO2 applications. A range of heat rejection (low-side) temperatures are considered and results indicate that operating the cycles at warmer low-side temperatures requires a corresponding increase in low-side pressure in order to maximize thermal efficiency. The relationship between low-side temperature and pressure suggests that inventory control (i.e., actively controlling the low-side pressure) is a favorable control mechanism, especially if the power plant is expected to operate away from its design point for significant periods of time. For cycles designed to operate at warmer heat rejection temperatures (e.g., a dry-cooled design in an arid climate), the benefits of recompression are reduced and a simple recuperated cycle may be favorable. The optimal SCO2 Brayton cycle design depends on the application being considered, and the developed modeling framework provides the consistent performance predictions that are required for further application-specific analyses.

Book Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power Applications

Download or read book Analysis of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrated Solar Power Applications written by Saeb Mostaghim Besarati and published by . This book was released on 2014 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research investigates the application of s-CO2 in solar power tower plants. First, a computationally efficient method is developed for designing the heliostat field in a solar power tower plant. Then, an innovative numerical approach is introduced to distribute the heat flux uniformly on the receiver surface. Next, different power cycles utilizing s-CO2 as the working fluid are analyzed. It is shown that including an appropriate bottoming cycle can further increase the power cycle efficiency. In the next step, a thermal receiver is designed based on compact heat exchanger (CHE) technology utilizing s-CO2 as the HTF. Finally, a 3MWth cavity receiver is designed using the CHE receivers as individual panels receiving solar flux from the heliostat field. Convective and radiative heat transfer models are employed to calculate bulk fluid and surface temperatures. The receiver efficiency is obtained as 80%, which can be further improved by optimizing the geometry of the cavity.

Book Concentrating Solar Power Technology

Download or read book Concentrating Solar Power Technology written by Keith Lovegrove and published by Elsevier. This book was released on 2012-10-19 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentrating solar power (CSP) technology is poised to take its place as one of the major contributors to the future clean energy mix. Using straightforward manufacturing processes, CSP technology capitalises on conventional power generation cycles, whilst cost effectively matching supply and demand though the integration of thermal energy storage. Concentrating solar power technology provides a comprehensive review of this exciting technology, from the fundamental science to systems design, development and applications. Part one introduces fundamental principles of concentrating solar power systems. Site selection and feasibility analysis are discussed, alongside socio-economic and environmental assessments. Part two focuses on technologies including linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems. Thermal energy storage, hybridization with fossil fuel power plants and the long-term market potential of CSP technology are explored. Part three goes on to discuss optimisation, improvements and applications. Topics discussed include absorber materials for solar thermal receivers, design optimisation through integrated techno-economic modelling, heliostat size optimisation, heat flux and temperature measurement technologies, concentrating solar heating and cooling for industrial processes, and solar fuels and industrial solar chemistry. With its distinguished editors and international team of expert contributors, Concentrating solar power technology is an essential guide for all those involved or interested in the design, production, development, optimisation and application of CSP technology, including renewable energy engineers and consultants, environmental governmental departments, solar thermal equipment manufacturers, researchers and academics. Provides a comprehensive review of concentrating solar power (CSP) technology, from the fundamental science to systems design, development and applications Reviews fundamental principles of concentrating solar power systems, including site selection and feasibility analysis and socio-economic and environmental assessments Provides an overview of technologies such as linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems

Book Organic Rankine Cycle  ORC  Power Systems

Download or read book Organic Rankine Cycle ORC Power Systems written by Ennio Macchi and published by Woodhead Publishing. This book was released on 2016-08-24 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. Provides a thorough introduction to ORC power systems Contains detailed chapters on ORC plant components Includes a section focusing on ORC design and optimization Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes Various chapters are authored by well-known specialists from Academia and ORC manufacturers

Book Applications of Supercritical Carbon Dioxide Based Power Cycles

Download or read book Applications of Supercritical Carbon Dioxide Based Power Cycles written by and published by . This book was released on 2018-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercritical CO2 (sCO2) cycles are being considered for future fossil energy systems. These sCO2 systems deliver the prospect of improved efficiency combined with smaller turbo -machinery size compared to a traditional Rankine steam system if operated at turbine inlet temperatures up to 760°C. Supercritical CO2 cycles have been investigated since the 1960s, but technical limitations, both computational and physical, prevented major strides on the subject until the turn of the millennium. Since then, numerous studies have investigated and conceptualized various sCO2 cycles: as standalone power cycles for nuclear applications, in concentrated solar power plants or for waste heat recovery. Many of these studies were conducted using established performance simulation tools such as NPSS, which were expanded in their functionality through supercritical CO2 fluid property functions.Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles provides up-to-date information of research and technology in this field. This book addresses components for sCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. The attractive features of sC02 power cycles are addressed. The supercritical CO2 (sCO2) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the sCO2 cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Currently sCO2 cycles are being investigated primarily for stationary power applications, but their high power density and efficiency, even for modest peak cycle temperatures, makes them credible bottoming cycle options for aero engine applications. To successfully utilize the high reactor outlet temperature, interest in alternative power conversion systems is also increasing. The steam Rankine cycle and gas turbine systems have been utilized by large size power plants for several decades.This book will appeal to students, practitioners, as well as researchers dealing with this field.

Book Handbook of Generation IV Nuclear Reactors

Download or read book Handbook of Generation IV Nuclear Reactors written by Igor Pioro and published by Woodhead Publishing. This book was released on 2022-12-07 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors Includes new trends and developments since the first publication, as well as brand new case studies and appendices Covers the latest research, developments and design information surrounding generation IV nuclear reactors

Book Modeling and Simulation of Energy Systems

Download or read book Modeling and Simulation of Energy Systems written by Thomas A. Adams II and published by MDPI. This book was released on 2019-11-06 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.

Book Pinch Analysis and Process Integration

Download or read book Pinch Analysis and Process Integration written by Ian C. Kemp and published by Elsevier. This book was released on 2011-04-01 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pinch analysis and related techniques are the key to design of inherently energy-efficient plants. This book shows engineers how to understand and optimize energy use in their processes, whether large or small. Energy savings go straight to the bottom line as increased profit, as well as reducing emissions. This is the key guide to process integration for both experienced and newly qualified engineers, as well as academics and students. It begins with an introduction to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature and the golden rules of pinch-based design to meet energy targets. The book shows how to extract the stream data necessary for a pinch analysis and describes the targeting process in depth. Other essential details include the design of heat exchanger networks, hot and cold utility systems, CHP (combined heat and power), refrigeration and optimization of system operating conditions. Many tips and techniques for practical application are covered, supported by several detailed case studies and other examples covering a wide range of industries, including buildings and other non-process situations. The only dedicated pinch analysis and process integration guide, fully revised and expanded supported by free downloadable energy targeting software The perfect guide and reference for chemical process, food and biochemical engineers, plant engineers and professionals concerned with energy optimisation, including building designers Covers the practical analysis of both new and existing systems, with ful details of industrial applications and case studies

Book Advances in Concentrating Solar Thermal Research and Technology

Download or read book Advances in Concentrating Solar Thermal Research and Technology written by Manuel Blanco and published by Woodhead Publishing. This book was released on 2016-11-10 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: After decades of research and development, concentrating solar thermal (CST) power plants (also known as concentrating solar power (CSP) and as Solar Thermal Electricity or STE systems) are now starting to be widely commercialized. Indeed, the IEA predicts that by 2050, with sufficient support over ten percent of global electricity could be produced by concentrating solar thermal power plants. However, CSP plants are just but one of the many possible applications of CST systems. Advances in Concentrating Solar Thermal Research and Technology provides detailed information on the latest advances in CST systems research and technology. It promotes a deep understanding of the challenges the different CST technologies are confronted with, of the research that is taking place worldwide to address those challenges, and of the impact that the innovation that this research is fostering could have on the emergence of new CST components and concepts. It is anticipated that these developments will substantially increase the cost-competiveness of commercial CST solutions and reshape the technological landscape of both CST technologies and the CST industry. After an introductory chapter, the next three parts of the book focus on key CST plant components, from mirrors and receivers to thermal storage. The final two parts of the book address operation and control and innovative CST system concepts. Contains authoritative reviews of CST research taking place around the world Discusses the impact this research is fostering on the emergence of new CST components and concepts that will substantially increase the cost-competitiveness of CST power Covers both major CST plant components and system-wide issues

Book Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems

Download or read book Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems written by Zhiwen Ma and published by . This book was released on 2011 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the proposed design, a single-phase process using supercritical carbon dioxide (S-CO2) as both heat transfer fluid (HTF) and thermal power cycle fluid simplifies the power system configuration. The design is compatible with sensible-heat thermal energy storage, if desired. The simpler machinery and compact size of the S-CO2 process may also reduce the installation, maintenance and operation cost of the system. Brayton-cycle systems using S-CO2 have smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. The lower thermal mass makes startup and load change faster for frequent start up/shut down operations and load adaption than a HTF/steam based system. The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Book Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems

Download or read book Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems written by Chen, Lin and published by IGI Global. This book was released on 2020-08-28 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercritical fluids are increasingly being used in energy conversion and fluid dynamics studies for energy-related systems and applications. These new applications are contributing to both the increase of energy efficiency as well as greenhouse gas reduction. Such research is critical for scientific advancement and industrial innovations that can support environmentally friendly strategies for sustainable energy systems. The Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems is a comprehensive two-volume reference that covers the most recent and challenging issues and outlooks for the applications and innovations of supercritical fluids. The book first converts basic thermo-dynamic behaviors and “abnormal” properties from a thermophysical aspect, then basic heat transfer and flow properties, recent new findings of its physical aspect and indications, chemical engineering properties, micro-nano-scale phenomena, and transient behaviors in fast and critical environments. It is ideal for engineers, energy companies, environmentalists, researchers, academicians, and students studying supercritical fluids and their applications for creating sustainable energy systems.

Book A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications  Presentation

Download or read book A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications Presentation written by and published by . This book was released on 2013 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Book A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications  Presentation

Download or read book A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications Presentation written by and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devisedthat have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with afocus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

Book Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems

Download or read book Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems written by Zhiwen Ma and published by . This book was released on 2011 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the proposed design, a single-phase process using supercritical carbon dioxide (S-CO2) as both heat transfer fluid (HTF) and thermal power cycle fluid simplifies the power system configuration. The design is compatible with sensible-heat thermal energy storage, if desired. The simpler machinery and compact size of the S-CO2 process may also reduce the installation, maintenance and operation cost of the system. Brayton-cycle systems using S-CO2 have smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. The lower thermal mass makes startup and load change faster for frequent start up/shut down operations and load adaption than a HTF/steam based system. The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.