EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimal Control and Appliation of AC AC Matrix Converters

Download or read book Optimal Control and Appliation of AC AC Matrix Converters written by Chaiypat Watthanasarn and published by . This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis presents the development of real-time control techniques for direct AC-AC matrix converters. Principles and performance characteristics of two pulse-width modulation methods;' the Venturini and Space Vector Modulation algorithms, are thoroughly explored. Comparative studies of the methods in several important aspects are performed, leading to the construction of a DSP-controlled high harmonic performance and low power loss matrix converter suitable for AC drives. The indisputable benefits of a matrix converter are further demonstrated by applying it successfully to the rotor current control of a computer-simulated wind-turbine driven doubly-fed induction generator. While investigating the two PWM methods, a novel technique for the Venturini scheme has been developed which compensates the effects of the supply voltage distortion and/or unbalance. For the SVM method, a new procedure for input displacement angle control has been derived. Comparison of the two methods' relative performances is made with regard to operation under unbalanced/distorted supply voltage, output voltage and input current harmonics, and converter losses........

Book DSP Based Electromechanical Motion Control

Download or read book DSP Based Electromechanical Motion Control written by Hamid A. Toliyat and published by CRC Press. This book was released on 2003-09-29 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the programming and use of a Digital Signal Processor (DSP) may not be the most complex process, utilizing DSPs in applications such as motor control can be extremely challenging for the first-time user. DSP-Based Electromechanical Motion Control provides a general application guide for students and engineers who want to implement DSP-base

Book Optimal Control of Matrix Converters Under Distorted and Unbalanced Supply Conditions

Download or read book Optimal Control of Matrix Converters Under Distorted and Unbalanced Supply Conditions written by Coneth Graham Richards and published by . This book was released on 2013 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: A matrix converter is a forced commutated converter which uses an array of controlled bi-directional switches as the main power processing elements to create a variable voltage system with unrestricted frequency. It does not contain any DC link circuit and does not require any large energy storage elements. The output frequency is theoretically infinitely variable as opposed to cyclo-converters. This study will evaluate present modulation techniques for matrix converters. Chapter 2 will review the present direct and indirect modulation techniques for Matrix Converters. Chapter 3 develops the indirect modulation model, based on space vector modulation techniques. In chapter 4 various state space models are developed and an optimised switching pattern, based on the least square error, is developed.

Book Optimal Planning of Smart Grid With Renewable Energy Resources

Download or read book Optimal Planning of Smart Grid With Renewable Energy Resources written by Jain, Naveen and published by IGI Global. This book was released on 2021-12-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the recent developments in renewable energy is crucial for a range of fields in today’s society. As environmental awareness and the need for a more sustainable future continues to grow, the uses of renewable energy, particularly in areas such as smart grid, must be considered and studied thoroughly to be implemented successfully and move society toward a more sustainable future. Optimal Planning of Smart Grid With Renewable Energy Resources offers a detailed guide to the new problems and opportunities for sustainable growth in engineering by focusing on modeling diverse problems occurring in science and engineering as well as novel effective theoretical methods and robust optimization theories, which can be used to analyze and solve multiple types of problems. Covering topics such as electric drives and energy systems, this publication is ideal for researchers, academicians, industry professionals, engineers, scholars, instructors, and students.

Book Power Converter Circuits

Download or read book Power Converter Circuits written by William Shepherd and published by CRC Press. This book was released on 2004-03-12 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text reveals all key components of rectification, inversion, cycloconversion, and conversion circuits. It authoritatively describes switching, voltage and current relationships, and converter properties, operation, control, and performance as utilized in most practical applications. Authored jointly by a veteran scholar and an accomplished researcher in the field Power Converter Circuits highlights methods grounded in classical mathematics and includes an abundance of numerical worked examples. Features hundreds of chapter-specific problems, with solutions provided separately at the end of the book

Book Power Converters and AC Electrical Drives with Linear Neural Networks

Download or read book Power Converters and AC Electrical Drives with Linear Neural Networks written by Maurizio Cirrincione and published by CRC Press. This book was released on 2017-12-19 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts, it first deals with voltage source inverters and their control. It then covers AC electrical drive control, focusing on induction and permanent magnet synchronous motor drives. The third part examines theoretical aspects of linear neural networks, particularly the neural EXIN family. The fourth part highlights original applications in electrical drives and power quality, ranging from neural-based parameter estimation and sensorless control to distributed generation systems from renewable sources and active power filters. Simulation and experimental results are provided to validate the theories. Written by experts in the field, this state-of-the-art book requires basic knowledge of electrical machines and power electronics, as well as some familiarity with control systems, signal processing, linear algebra, and numerical analysis. Offering multiple paths through the material, the text is suitable for undergraduate and postgraduate students, theoreticians, practicing engineers, and researchers involved in applications of ANNs.

Book AC to AC Converters

Download or read book AC to AC Converters written by Narayanaswamy P R Iyer and published by CRC Press. This book was released on 2019-06-03 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (SCR) whereas matrix converters are built using semiconductor bidirectional switches. This text book provides a summary of AC to AC Converter modelling excluding AC controllers. The software Simulink® by Mathworks Inc., USA is used to develop the models of AC to AC Converters presented in this text book. The term model in this text book refers to SIMULINK model. This text book is mostly suitable for researchers and practising professional engineers in the industry working in the area of AC to AC converters. Features Provides a summary of AC to AC Converter modelling excluding AC controllers Includes models for three phase AC to three phase AC matrix converters using direct and indirect space vector modulation algorithm Presents new applications such as single and dual programmable AC to DC rectifier with derivations for output voltage Displays Hardware-in-the Loop simulation of a three phase AC to single phase AC matrix converter Provides models for three phase multilevel matrix converters, Z-source Direct and Quasi Z-source Indirect matrix converters; a model for speed control and brake by plugging of three phase induction motor and separately excited DC motors using matrix converter; a model for a new single phase and three phase sine wave direct AC to AC Converter without a DC link using three winding transformers and that for a square wave AC to square wave AC converter using a DC link; models for variable frequency, variable voltage AC to AC power supply; models for Solid State Transformers using Dual Active Bridge topology and a new direct AC to AC Converter topology; and models for cycloconverters and indirect matrix converters

Book Three phase AC AC Power Converters Based on Matrix Converter Topology

Download or read book Three phase AC AC Power Converters Based on Matrix Converter Topology written by Paweł Szcześniak and published by Springer Science & Business Media. This book was released on 2013-02-28 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Góra. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept will also be valuable to power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.

Book Impedance Source Matrix Converters and Control

Download or read book Impedance Source Matrix Converters and Control written by Liu and published by Wiley-Blackwell. This book was released on 2024-10-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Implementation of an AC to DC Matrix Converter with High Frequency Isolation and Power Factor Correction  for Particle Accelerator Applications

Download or read book Design and Implementation of an AC to DC Matrix Converter with High Frequency Isolation and Power Factor Correction for Particle Accelerator Applications written by Rafael Garcia Gil and published by Universal-Publishers. This book was released on 2005-11-05 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis (written in Spanish) presents the analysis, design and implementation of a four-quadrant power supply with high-frequency isolation, which is expected to be used to feed the low-energy correction magnet of a particle accelerator. In particle accelerator applications the magnetic field during beam acceleration may be either positive or negative, and true bipolar power converters are needed. The selected bipolar topology consists of a bidirectional three-phase to single-phase reduced matrix converter (RMC) with power factor correction and a bidirectional active rectifier. Main features of this power converter are the ability to regenerate energy back to the utility when the magnet acts as generator, unity power factor at the mains and reduction of volume and weight thanks to the inclusion of the isolation transformer at the switching frequency. A space vector modulation (SVM) technique was used to achieve unity power factor at the input and output current regulation simultaneously. This was done while a symmetrical pure AC profile is generated at the primary side of the isolation transformer. The secondary AC signal is then rectified into a positive or negative voltage, according to the desired output current sign, and later filtered to obtain the output DC current in both polarities. The active rectifier used permits reverse current flow to the primary side when driving an inductive load. By synchronising the commutation of both converters and adding a saturable inductor and a blocking capacitor it is possible to achieve soft commutation for most of the semiconductor elements. An all-digital control based on a Digital-Signal-Processor (DSP) and a Field-Programmed-Gate-Array (FPGA) was used to implement space vector modulation and output current regulation. Output current regulation is performed on a powerful 32-bit fixed-point DSP of Motorola, and was implemented by means of an observer based optimum state feedback control (LQR -- Linear Quadratic Regulator). A reduced order observer was implemented to estimate the output filter inductor current, reducing the number of sensors. Experimental results of a 1.5 kW, 20 kHz prototype are presented to illustrate the performance of the proposed topology.

Book Optimal Control Schemes for Power System with Unified Power Flow Controller  UPFC

Download or read book Optimal Control Schemes for Power System with Unified Power Flow Controller UPFC written by Dr. Hidaia Mahmood Alassouli and published by Dr. Hidaia Mahmood Alassouli. This book was released on 2021-04-18 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: FACTS are one aspect of power electronics revolution that is taking place in all areas of electrical energy. A variable of powerful semiconductor devices not only offer the advantage of high speed and reliability of switching but, more importantly, the opportunity offered by a variety of innovative circuit concepts based on these power devices enhance the value of electric energy. In generation area, the potential application of power electronics is largely in renewable generation. Photovoltaic and fuel cells requires conversion of dc to ac. Generation with variable speed is necessary for economic viability of wind and small hydro generators. Variable-speed wind generators and small hydro generators requires conversion of variable frequency ac to power system frequency. These applications of power electronics in renewable generation area require converter sizes in the range of few kilowatts to few megawatts. In coming decades, electrical energy storage is expected to be widely used in power systems as capacitor, battery and superconducting magnet technologies move forward. Batteries are widely used already for emergency power supplies. These require ac/dc/ac converters in the range of a few kilowatts to a few tens of megawatts. On the other hand, variable speed hydro storage requires converters of up to a few hundred megawatts. In transmission area, application of power electronics consists of High Voltage Direct Current (HVDC) power transmission and FACTS. HVDC is often an economical way to interconnect certain power systems, which are suited in different regions separated by long distances or those have different frequencies or incompatible frequency control. HVDC involves conversion of ac to dc at one end and conversion of dc to ac at the other end. What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Part 1: Gives the description of optimal control design. · Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.

Book AC Electric Motors Control

Download or read book AC Electric Motors Control written by Fouad Giri and published by John Wiley & Sons. This book was released on 2013-03-25 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.

Book Control of Power Electronic Converters and Systems

Download or read book Control of Power Electronic Converters and Systems written by Frede Blaabjerg and published by Academic Press. This book was released on 2018-01-25 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of Power Electronic Converters and Systems examines the theory behind power electronic converter control, including operation, modeling and control of basic converters. The book explores how to manipulate components of power electronics converters and systems to produce a desired effect by controlling system variables. Advances in power electronics enable new applications to emerge and performance improvement in existing applications. These advances rely on control effectiveness, making it essential to apply appropriate control schemes to the converter and system to obtain the desired performance. - Discusses different applications and their control - Explains the most important controller design methods both in analog and digital - Describes different important applications to be used in future industrial products - Covers voltage source converters in significant detail - Demonstrates applications across a much broader context

Book Modular Multilevel Converters

Download or read book Modular Multilevel Converters written by Sixing Du and published by John Wiley & Sons. This book was released on 2018-01-11 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Book Analysis  Optimization and Control of Grid Interfaced Matrix Based Isolated AC DC Converters

Download or read book Analysis Optimization and Control of Grid Interfaced Matrix Based Isolated AC DC Converters written by Jaydeep Saha and published by Springer Nature. This book was released on 2022-11-05 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents novel contributions in the development of solid-state-transformer (SST) technology both for medium-voltage (MV) and low-voltage (LV) utility grid interfaces, which can potentially augment the grid modernization process in the evolving power system paradigm. For the MV interface, a single-stage AC-DC SST submodule topology has been proposed, and its modulation and soft-switching possibilities are analysed, experimentally validated and adequately benchmarked. A control scheme with power balance capability among submodules is developed for MV grid-connected single-stage AC-DC SST for smooth operation under inevitable parameter drift scenario, and experimental validation shows excellent performance under drastic load change conditions. A novel machine learning-aided multi-objective design optimization framework for grid-connected SST is developed and experimentally validated, which equips a power electronics design engineer with meagre computational resources to find out the most optimal SST design in a convenient time-frame. This book has also contributed towards the development of dual-active-bridge (DAB)-type and non-DAB-type LV grid-interfaced isolated AC-DC converters by providing solutions to specific topology and modulation-related shortcomings in these two types of topologies. A comprehensive comparison of the DAB and non-DAB-type LVAC-LVDC converters reveals the superiority of DAB-type conversion strategy.

Book Design of Three phase AC Power Electronics Converters

Download or read book Design of Three phase AC Power Electronics Converters written by Fei "Fred" Wang and published by John Wiley & Sons. This book was released on 2023-11-08 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESIGN OF THREE-PHASE AC POWER ELECTRONICS CONVERTERS Comprehensive resource on design of power electronics converters for three-phase AC applications Design of Three-phase AC Power Electronics Converters contains a systematic discussion of the three-phase AC converter design considering various electrical, thermal, and mechanical subsystems and functions. Focusing on establishing converter components and subsystems models needed for the design, the text demonstrates example designs for these subsystems and for the whole three-phase AC converters considering interactions among subsystems. The design methods apply to different applications and topologies. The text presents the basics of the three-phase AC converter, its design, and the goal and organization of the book, focusing on the characteristics and models important to the converter design for components commonly used in three-phase AC converters. The authors present the design of subsystems, including passive rectifiers, inverters and active rectifiers, electromagnetic interference (EMI) filters, thermal management system, control and auxiliaries, mechanical system, and application considerations, and discuss design optimization, which presents methodology to achieve optimal design results for three-phase AC converters. Specific sample topics covered in Design of Three-phase AC Power Electronics Converters include: Models and characteristics for devices most commonly used in three-phase converters, including conventional Si devices, and emerging SiC and GaN devices Models and selection of various capacitors; characteristics and design of magnetics using different types of magnetic cores, with a focus on inductors Optimal three-phase AC converter design including design and selection of devices, AC line inductors, DC bus capacitors, EMI filters, heatsinks, and control. The design considers both steady-state and transient conditions Load and source impact converter design, such as motors and grid condition impacts For researchers and graduate students in power electronics, along with practicing engineers working in the area of three-phase AC converters, Design of Three-phase AC Power Electronics Converters serves as an essential resource for the subject and may be used as a textbook or industry reference.

Book Power Electronics Handbook

Download or read book Power Electronics Handbook written by Muhammad H. Rashid and published by Elsevier. This book was released on 2011-01-13 with total page 1409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronics, which is a rapidly growing area in terms of research and applications, uses modern electronics technology to convert electric power from one form to another, such as ac-dc, dc-dc, dc-ac, and ac-ac with a variable output magnitude and frequency. It has many applications in our every day life such as air-conditioners, electric cars, sub-way trains, motor drives, renewable energy sources and power supplies for computers. This book covers all aspects of switching devices, converter circuit topologies, control techniques, analytical methods and some examples of their applications. Designed to appeal to a new generation of engineering professionals, Power Electronics Handbook, 3rd Edition features four new chapters covering renewable energy, energy transmission, energy storage, as well as an introduction to Distributed and Cogeneration (DCG) technology, including gas turbines, gensets, microturbines, wind turbines, variable speed generators, photovoltaics and fuel cells, has been gaining momentum for quite some time now.smart grid technology. With this book readers should be able to provide technical design leadership on assigned power electronics design projects and lead the design from the concept to production involving significant scope and complexity. - Contains 45 chapters covering all aspects of power electronics and its applications - Three new chapters now including coverage Energy Sources, Energy Storage and Electric Power Transmission - Contributions from more than fifty leading experts spanning twelve different countries