EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optical  Structural and Electrical Properties of Group III Nitrides

Download or read book Optical Structural and Electrical Properties of Group III Nitrides written by ICNS (3, 1999, Montpellier) and published by . This book was released on 1999 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Properties of Group III Nitrides

Download or read book Properties of Group III Nitrides written by James H. Edgar and published by Institution of Electrical Engineers. This book was released on 1994 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The group III nitrides are playing an increasingly important role in the development of commercially viable microelectronic and optoelectronic devices. This volume provides reviews and evaluations of the group, in addition to guidance on the current reference literature.

Book III Nitride Semiconductors

Download or read book III Nitride Semiconductors written by Hongxing Jiang and published by CRC Press. This book was released on 2002-07-26 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second part presents a comprehensive overview of fundamental optical properties of the III Nitride Semiconductor. All optoelectronic applications based on III-nitrides are due to their unique optical properties and characterizations of III-nitrides. Much information, which is critical to the design and improvement of optoelectronic devices based on III-nitrides has been obtained in the last several years. This is the second of a two part Volume in the seriesOptoelectronic Properties of Semiconductors and Superlattices. Part II consists of chapters with emphasis on the optical spectroscopy of highly excited group III-nitrides, theoretical calculations and experimental measurements of optical constants of III-nitrides. The remaining five chapters focus on the relationships and properties of GaN and InGaN as relating to III Nitrides. This unique volume provides a comprehensive review and introduction of the defects and structural properties of GaN and related compounds for newcomers to the field and will be a stimulus to further advances for experienced researchers. The chapters contained in this volume constitutes a representative sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.

Book III Nitride Semiconductors

Download or read book III Nitride Semiconductors written by M.O. Manasreh and published by Elsevier. This book was released on 2000-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.

Book Optical and Electrical Properties of III Nitrides and Related Materials

Download or read book Optical and Electrical Properties of III Nitrides and Related Materials written by and published by . This book was released on 2016 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the members of the III-nitride material system, boron-nitride (BN) is the least studied and understood. Its extraordinary physical properties, such as ultra-high chemical stability, thermal conductivity, electrical resistivity, band gap (Eg ~ 6 eV), and optical absorption near the band gap make hexagonal BN (h-BN) the material of choice for emerging applications such as deep ultraviolet (DUV) optoelectronic devices. Moreover, h-BN has a close lattice match to graphene and is the most suitable substrate and dielectric/separation layer for graphene electronics and optoelectronics. Similar to graphene, low dimensional h-BN is expected to possess rich new physics. Other potential applications include super-capacitors and electron emitters. However, our knowledge concerning the semiconducting properties of h-BN is very scarce. The project aims to extend our studies to the "newest" family member of the III-nitride material system, h-BN, and to address issues that have not yet been explored but are expected to profoundly influence our understanding on its fundamental properties and device applications. During the supporting period, we have improved the growth processes of h-BN epilayers by metal organic chemical vapor deposition (MOCVD), investigated the fundamental material properties, and identified several unique features of h-BN as well as critical issues that remain to be addressed.

Book Electrical and Optical Characterization of Group III nitride Alloys for Solar Energy Conversion

Download or read book Electrical and Optical Characterization of Group III nitride Alloys for Solar Energy Conversion written by Rebecca Elizabeth Jones and published by . This book was released on 2008 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optoelectronic Devices

Download or read book Optoelectronic Devices written by M Razeghi and published by Elsevier. This book was released on 2004 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications. The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage. This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics. Broad review of optoelectronic applications of III-V nitrides

Book Structural and Optical Characterization of Group III nitride Compound Semiconductors

Download or read book Structural and Optical Characterization of Group III nitride Compound Semiconductors written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The structural properties of the group III-nitrides including AlN, Ga1-xMnxN, GaN:Cu, and InN were investigated by Raman spectroscopy. Absorption and photoluminescence spectroscopy were utilized to study the optical properties in these materials. The analysis of physical vapor transport grown AlN single crystals showed that oxygen, carbon, silicon, and boron are the major impurities in the bulk AlN. The Raman analysis revealed high crystalline quality and well oriented AlN single crystals. The absorption coefficient of AlN single crystals were assessed in the spectral range from deep UV to the FIR. The absorption and photoluminescence analysis indicate that, in addition to oxygen, carbon, boron, and silicon, contribute to the optical properties of bulk AlN crystals. In situ Cu-doped GaN epilayers with Cu concentrations in the range of 2x10^16 cm-3 - 5x1017 cm-3, grown on sapphire substrate by metal organic chemical vapor deposition, were investigated by Raman and PL spectroscopy. The Raman study revealed high crystalline GaN:Cu layers with minimal damage to the hexagonal lattice structure due to the Cu incorporation. A strong Cu related emission band at 2.4 eV was assigned to Cu induced optical transitions between deep Cu states and shallow residual donor states. Compensation of Cu states by residual donors and poor activation probability of deep Cu states are responsible for semi-insulating electrical conductivity. Ferromagnetic Ga1-xMnxN epilayers, grown by MOCVD with Mn concentration from x = 0 to x = 1.5, were optically investigated by Raman, PL, and transmission spectroscopy. The Raman studies revealed Mn-related Raman peaks at 300 cm-1, 609 cm-1, and 669 cm-1. Mn-related absorption and emission bands in Ga1-xMnxN were observed at 1.5 eV and 3.0 eV, respectively. The structural properties of InN layers, grown by high pressure-CVD with different free carrier concentrations, were analyzed by Raman spectroscopy. The Raman results show that the InN layers have high crystalline quality. The free carriers in layers were calculated by using the Lindhard-Mermin dielectric function taking into account finite wave vectors for various scattering processes including forbidden Frohlich, deformational potential associated with allowed electro-optic, and charge density fluctuation, mechanisms. The free carrier concentrations in the layers are below 1x10^20 cm-3.

Book Iii nitride Semiconductor Materials

Download or read book Iii nitride Semiconductor Materials written by Zhe Chuan Feng and published by World Scientific. This book was released on 2006-03-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a

Book Electrical Properties of Group III Nitrides

Download or read book Electrical Properties of Group III Nitrides written by Kwon John Lee and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Group III Nitride Semiconductor Optoelectronics

Download or read book Group III Nitride Semiconductor Optoelectronics written by Choudhury J. Praharaj and published by John Wiley & Sons. This book was released on 2023-11-07 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a comprehensive exploration of the foundations and frontiers of the optoelectronics technology of group-III nitrides and their ternary alloys In Group III-Nitride Semiconductor Optoelectronics, expert engineer Dr. Choudhury J. Praharaj delivers an insightful overview of the optoelectronic applications of group III-nitride semiconductors. The book covers all relevant aspects of optical emission and detection, including the challenges of optoelectronic integration and a detailed comparison with other material systems. The author discusses band structure and optical properties of III-nitride semiconductors, as well as the properties of their low-dimensional structures. He also describes different optoelectronic systems such as LEDs, lasers, photodetectors, and optoelectronic integrated circuits. Group III-Nitride Semiconductor Optoelectronics covers both the fundamentals of the field and the most cutting-edge discoveries. Detailed appendices contain Maxwell's equations in dielectric media and descriptions of time-dependent perturbation theory and light-matter interaction. Readers will also benefit from: A thorough introduction to the band structure and optical properties of group III-nitride semiconductors Comprehensive explorations of growth and doping of group III-nitride devices and heterostructures Practical discussions of the optical properties of low dimensional structures in group III-nitrides In-depth examinations of lasers and light-emitting diodes, other light-emitting devices, photodetectors, photovoltaics, and optoelectronic integrated circuits Concise treatments of the quantum optical properties of nitride semiconductor devices Perfect for researchers in electrical engineering, applied physics, and materials science, Group III-Nitride Semiconductor Optoelectronics is also a must-read resource for graduate students and industry practitioners in those fields seeking a state-of-the-art reference on the optoelectronics technology of group III-nitrides.

Book Group III Nitride Semiconductor Optoelectronics

Download or read book Group III Nitride Semiconductor Optoelectronics written by C. Jayant Praharaj and published by John Wiley & Sons. This book was released on 2023-10-11 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group III-Nitride Semiconductor Optoelectronics Discover a comprehensive exploration of the foundations and frontiers of the optoelectronics technology of group-III nitrides and their ternary alloys In Group III-Nitride Semiconductor Optoelectronics, expert engineer Dr. C. Jayant Praharaj delivers an insightful overview of the optoelectronic applications of group III-nitride semiconductors. The book covers all relevant aspects of optical emission and detection, including the challenges of optoelectronic integration and a detailed comparison with other material systems. The author discusses band structure and optical properties of III-nitride semiconductors, as well as the properties of their low-dimensional structures. He also describes different optoelectronic systems such as LEDs, lasers, photodetectors, and optoelectronic integrated circuits. Group III-Nitride Semiconductor Optoelectronics covers both the fundamentals of the field and the most cutting-edge discoveries. Chapters provide thorough connections between theory and experimental advances for optoelectronics and photonics. Readers will also benefit from: A thorough introduction to the band structure and optical properties of group III-nitride semiconductors Comprehensive explorations of growth and doping of group III-nitride devices and heterostructures Practical discussions of the optical properties of low dimensional structures in group III- nitrides In-depth examinations of lasers and light-emitting diodes, other light-emitting devices, photodetectors, photovoltaics, and optoelectronic integrated circuits Concise treatments of the quantum optical properties of nitride semiconductor devices Perfect for researchers in electrical engineering, applied physics, and materials science, Group III-Nitride Semiconductor Optoelectronics is also a must-read resource for graduate students and industry practitioners in those fields seeking a state-of-the-art reference on the optoelectronics technology of group III-nitrides.

Book Electrical and Optical Properties of Indium Nitride and Indium rich Nitrides Prepared by Molecular Beam Epitaxy for Opto electronics Applications

Download or read book Electrical and Optical Properties of Indium Nitride and Indium rich Nitrides Prepared by Molecular Beam Epitaxy for Opto electronics Applications written by Hai Lu and published by . This book was released on 2003 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nitride Semiconductors and Devices

Download or read book Nitride Semiconductors and Devices written by Hadis Morkoç and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This timely monograph addresses an important class of semiconductors and devices that constitute the underlying technology for blue lasers. It succinctly treats structural, electrical and optical properties of nitrides and the substrates on which they are deposited, band structures of nitrides, optical processes, deposition and fabrication technologies, light-emitting diodes, and lasers. It also includes many tables and figures detailing the properties and performance of nitride semiconductors and devices.

Book Free charge carrier properties in group III nitrides and graphene studied by THz to MIR ellipsometry and optical Hall effect

Download or read book Free charge carrier properties in group III nitrides and graphene studied by THz to MIR ellipsometry and optical Hall effect written by Nerijus Armakavicius and published by Linköping University Electronic Press. This book was released on 2019-03-05 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of silicon based electronics have revolutionized our every day life during the last five decades. Nowadays silicon based devices operate close to their theoretical limits that is becoming a bottleneck for further progress. In particular, for the growing field of high frequency and high power electronics, silicon cannot offer the required properties. Development of materials capable of providing high current densities, carrier mobilities and high breakdown fields is crucial for further progress in state of the art electronics. Epitaxial graphene grown on semi-insulating silicon carbide substrates has a high potential to be integrated in current planar device technologies. High electron mobilities and sheet carrier densities make graphene extremely attractive for high frequency analog applications. One of the remaining challenges is the interaction of epitaxial graphene with the substrate. Typically, much lower free charge carrier mobilities, compared to free standing graphene, and doping, due to charge transfer from the substrate, is reported. Thus, a good understanding of the intrinsic free charge carriers properties and the factors affecting them is very important for further development of epitaxial graphene. Group III-nitrides have been extensively studied and already have proven their high efficiency as light emitting diodes for short wavelengths. High carrier mobilities and breakdown electric fields were demonstrated for group III-nitrides, making them attractive for high frequency and high power applications. Currently, In-rich InGaN alloys and AlGaN/GaN high electron mobility structures are of high interest for the research community due to open fundamental questions such as free charge carrier properties at high temperatures and wavefunction hybridization in AlGaN/GaN heterostructures. Electrical characterization techniques, commonly used for the determination of free charge carrier properties, require good ohmic and Schottky contacts, which in certain cases can be difficult to achieve. Access to electrical properties of buried conductive channels in multilayered structures requires modification of samples and good knowledge of the electrical properties of all electrical junctions within the structure. Moreover, the use of contacts to electrically characterize two-dimensional electronic materials, such as graphene, can alter their intrinsic properties. Furthermore, the determination of effective mass parameters commonly employs cyclotron resonance and Shubnikov-de Haas oscillations measurements, which require long scattering times of free charge carriers, high magnetic fields and low temperatures. The optical Hall effect is an external magnetic-field induced birefringence of conductive layers due to the free charge carriers interaction with long-wavelength electromagnetic waves under the influence of the Lorentz force. The optical Hall effect can be measured by generalized ellipsometry and provides a powerful method for the determination of free charge carrier properties in a non-destructive and contactless manner. The optical Hall effect measurements can provide quantitative information about free charge carrier type, concentration, mobility and effective mass parameters at temperatures ranging from few kelvins to room temperature and above. It further allows to differentiate the free charge carrier properties of individual layers in multilayer samples. The employment of a backside cavity for transparent samples can enhance the optical Hall effect and allows to access free charge carrier properties at relatively low magnetic fields using permanent magnet. The optical Hall effect measurements at mid-infrared spectral range can be used to probe quantum mechanical phenomena such as Landau levels in graphene. The magnetic field dependence of the inter-Landau level transition energies and optical polarization selection rules provide information about coupling properties between graphene layers and the electronic band structure. Measurement of the optical Hall effect by generalized ellipsometry is an indirect technique requiring subsequent data analysis. Parameterized optical models are fitted to match experimentally measured ellipsometric spectra by varying physically significant model parameters. Analysis of the generalized ellipsometry data at long wavelengths for samples containing free charge carriers by optical models based on the classical Drude formulation, augmented with an external magnetic field contribution, allows to extract carrier concentration, mobility and effective mass parameters. The development of the integrated FIR and THz frequency-domain ellipsometer at the Terahertz Materials Analysis Center in Linköping University was part of the graduate studies presented in this dissertation. The THz ellipsometer capabilities are demonstrated by determination of Si and sapphire optical constants, and free charge carrier properties of two-dimensional electron gas in GaN-based high electron mobility transistor structures. The THz ellipsometry is further shown to be capable of determining free charge carrier properties and following their changes upon variation of ambient conditions in atomically thin layers with an example of epitaxial graphene. A potential of the THz OHE with the cavity enhancement (THz-CE-OHE) for determination of the free charge carrier properties in atomically thin layers were demonstrated by the measurements of the carrier properties in monolayer and multilayer epitaxial graphene on Si-face 4H-SiC. The data analysis revealed p-type doping for monolayer graphene with a carrier density in the low 1012 cm-2 range and a carrier mobility of 1550 cm2V-1s-1. For the multilayer graphene, n-type doping with a carrier density in the low 1013 cm-2 range, a mobility of 470 cm2V-1s-1 and an effective mass of (0.14 ± 0.03)m0 were extracted. Different type of doping among monolayer and multilayer graphene is explained as a result of different hydrophobicity among samples. Further, we have employed THz-CE-OHE to determine for the first time anisotropic mobility parameter in quasi-free-standing bilayer epitaxial graphene induced by step-like surface morphology of 4H-SiC. Correlation of atomic force microscopy, Raman scattering spectroscopy, scanning probe Kelvin probe microscopy, low energy electron microscopy and diffraction analysis allows us to investigate the possible scattering mechanisms and suggests that anisotropic mobility is induced by varying local mobility parameter due to interaction between graphene and underlaying substrate. The origin of the layers decoupling in multilayer graphene on C-face 4H-SiC was studied by MIR-OHE, transmission electron microscopy and electron energy loss spectroscopy. The results revealed the decoupling of the layers induced by the increased interlayer spacing which is attributed to the Si atoms trapped between graphene layers. MIR ellipsometry and MIR-OHE measurements were employed to determine the electron effective mass in a wurtzite In0.33Ga0.67N epitaxial layer. The data analysis revealed the effective mass parameters parallel and perpendicular to the c-axis which can be considered as equal within sensitivity of our measurements. The determined effective mass is consistent with linear dependence on the In content. Analysis of the free charge carrier properties in AlGaN/GaN high electron mobility structures with modified interfaces showed that AlGaN/GaN interface structure has a significant effect on the mobility parameter. A sample with a sharp interface layers exhibits a record mobility of 2332 ± 73 cm2V-1s-1. The determined effective mass parameters showed an increase compared to the bulk GaN value, which is attributed to the penetration of the electron wavefunction into the AlGaN barrier layer. Temperature dependence of free charge carrier properties in GaN-based high electron mobility transistor structures with AlGaN and InAlN barrier layers were measured by terahertz optical Hall effect technique in a temperature range from 7.2 K to 398 K. The results revealed strong changes in the effective mass and mobility parameters. At temperatures below 57 K very high carrier mobility parameters above 20000 cm2V-1s-1 for AlGaN-barrier sample and much lower mobilities of ~ 5000 cm2V-1s-1 for InAlN-barrier sample were obtained. At low temperatures the effective mass parameters for both samples are very similar to bulk GaN value, while at temperatures above 131 K effective mass shows a strong increase with temperature. The effective masses of 0.344 m0 (@370 K) and 0.439 m0 (@398 K) were obtained for AlGaN- and InAlN-barrier samples, respectively. We discussed the possible origins of effective mass enhancement in high electron mobility transistor structures.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release :
  • ISBN : 9780198501596
  • Pages : 690 pages

Download or read book written by and published by . This book was released on with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Nitride Semiconductors and Devices  GaN based Optical and Electronic Devices

Download or read book Handbook of Nitride Semiconductors and Devices GaN based Optical and Electronic Devices written by Hadis Morkoç and published by John Wiley & Sons. This book was released on 2009-07-30 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 3 deals with nitride semiconductor devices and device technology. Among the application areas that feature prominently here are LEDs, lasers, FETs and HBTs, detectors and unique issues surrounding solar blind detection.