EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optical Processes in Organic Materials and Nanostructures II

Download or read book Optical Processes in Organic Materials and Nanostructures II written by Manfred Eich and published by . This book was released on 2013-09-19 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE offer access to the latest innovations in research and technology and are among the most cited references in patent literature.

Book Optical Processes in Organic Materials and Nanostructures II

Download or read book Optical Processes in Organic Materials and Nanostructures II written by and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Processes in Organic Materials and Nanostructures

Download or read book Optical Processes in Organic Materials and Nanostructures written by Rachel Jakubiak and published by . This book was released on 2012 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Book Electronic Processes in Organic Electronics

Download or read book Electronic Processes in Organic Electronics written by Hisao Ishii and published by . This book was released on 2015-01-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Nanostructures  Science and Applications

Download or read book Organic Nanostructures Science and Applications written by V.M. Agranovich and published by IOS Press. This book was released on 2002-11-19 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Enrico Fermi School, the first one dedicated to advanced organic materials, the main research results and open problems in science and technology of organic nanostructures have been discussed; in particular, growth techniques, electronic and optical properties, device applications. The necessary background material has been covered and interdisciplinary aspects have been emphasized with the aim of a unified approach to the basic physical phenomena bridging the gap between standard graduate courses and the state of the art in the field. The lecturers have provided authoritative and comprehensive tutorial reviews of the main issues involved in the science and technology of organic materials and their nanostructures. In particular, the following topics have been specifically addressed: charge carrier mobility and transport properties, electrical conductivity of conjugated polymers, charge transfer states in organics, photorefractivity in organics, energy transfer processes in organics, photophysics and fast spectroscopy, technology of polymer electronics and light emitting devices.

Book Computational Studies Of New Materials Ii  From Ultrafast Processes And Nanostructures To Optoelectronics  Energy Storage And Nanomedicine

Download or read book Computational Studies Of New Materials Ii From Ultrafast Processes And Nanostructures To Optoelectronics Energy Storage And Nanomedicine written by Thomas F George and published by World Scientific. This book was released on 2011-01-07 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Studies of New Materials was published by World Scientific in 1999 and edited by Daniel Jelski and Thomas F George. Much has happened during the past decade. Advances have been made on the same materials discussed in the 1999 book, including fullerenes, polymers and nonlinear optical processes in materials, which are presented in this 2010 book. In addition, different materials and topics are comprehensively covered, including nanomedicine, hydrogen storage materials, ultrafast laser processes, magnetization and light-emitting diodes.

Book Optically Induced Nanostructures

Download or read book Optically Induced Nanostructures written by Karsten König and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-05-19 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.

Book Nanostructured Materials and Their Applications

Download or read book Nanostructured Materials and Their Applications written by Stergios Logothetidis and published by Springer Science & Business Media. This book was released on 2012-01-13 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.

Book Electronic Processes in Organic Electronics

Download or read book Electronic Processes in Organic Electronics written by Hisao Ishii and published by Springer. This book was released on 2015-01-07 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.

Book Nonlinear Optical Processes in Organic Materials

Download or read book Nonlinear Optical Processes in Organic Materials written by Gary Carter and published by . This book was released on 1987 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self Assembled Organic Inorganic Nanostructures

Download or read book Self Assembled Organic Inorganic Nanostructures written by Christian von Borczyskowski and published by CRC Press. This book was released on 2017-03-27 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current state and perspectives in natural and life sciences are strongly linked to the development of novel complex organic-inorganic materials at various levels of organization, including semiconductor quantum dots (QDs) and QD-based nanostructures with unique optical and physico-chemical properties. This book provides a comprehensive description of the morphology and main physico-chemical properties of self-assembled inorganic-dye nanostructures as well as some applications in the field of nanotechnology. It crosses disciplines to examine essential nanoassembly principles of QD interaction with organic molecules, excited state dynamics in nanoobjects, theoretical models, and methodologies. Based on ensemble and single-nanoobject detection, the book quantitatively shows (for the first time on a series of nanoassemblies) that surface-mediated processes (formation of trap states) dictate the probability of several of the most interesting and potentially useful photophysical phenomena (FRET- or non-FRET-induced quenching of QD photoluminescence) observed for colloidal QDs and QD–dye nanoassemblies. Further, nanostructures can be generated by nanolithography and thereafter selectively decorated with dye molecules. A similar approach applies to natural nanosized surface heterogeneities.

Book Organic Nanostructures for Next Generation Devices

Download or read book Organic Nanostructures for Next Generation Devices written by Katharina Al-Shamery and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This jaw-dropping window on the future is the first comprehensive overview of the fabrication, fundamental properties, and applications of a new class of nanoscaled organic materials. These materials offer incredible scope to scientists wanting to exploit their optical and electronic properties and offer the potential to create a new generation of tiny devices with powerful applications. Altogether, the book offers a unique integration of organic materials science basics, nanostructured organic materials fabrication, and device applications.

Book Nanostructured Materials

Download or read book Nanostructured Materials written by T. Daniel Thangadurai and published by Springer Nature. This book was released on 2020-02-27 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.

Book Organic Nanophotonics

Download or read book Organic Nanophotonics written by Yong Sheng Zhao and published by Springer. This book was released on 2014-11-05 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactions between light and matter and consists in three chapters, including the propagation of light in organic nanostructures and photoswitches based on nonlinear optical polymer photonic crystals and photoresponsive molecules, respectively. The final chapter of this book introduces the integration of miniaturized photonic devices and circuits with various organic nanophotonic elements. The practical case studies demonstrate how the latest applications actually work, while tables throughout the book summarize key information and diagrams and figures help readers to grasp complex concepts and designs. The references at the end of each chapter can be used as the gateway to the relevant literature in the field. Moreover, this book helps researchers to advance their own investigations to develop the next generation of miniaturized devices for information processing, efficient energy conversion, and highly accurate sensing. Yong Sheng Zhao, PhD, is a Professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), China.

Book Optics of Conducting Polymer Thin Films and Nanostructures

Download or read book Optics of Conducting Polymer Thin Films and Nanostructures written by Shangzhi Chen and published by Linköping University Electronic Press. This book was released on 2021-02-19 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications. Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.

Book Handbook of Organic Materials for Electronic and Photonic Devices

Download or read book Handbook of Organic Materials for Electronic and Photonic Devices written by Oksana Ostroverkhova and published by Woodhead Publishing. This book was released on 2018-11-30 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication

Book Photonics  Volume 2

Download or read book Photonics Volume 2 written by David L. Andrews and published by John Wiley & Sons. This book was released on 2015-02-24 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.