EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optical Processes in Microcavities

Download or read book Optical Processes in Microcavities written by Richard Kounai Chang and published by World Scientific. This book was released on 1996 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dielectric microstructures act as ultrahigh Q factors optical cavities, which modify the spontaneous emission rates and alter the spatial distributions of the input and output radiation. The editors have selected leading scientists who have made seminal contributions in different aspects of optical processes in microcavities. Every attempt has been made to unify the underlying physics pertaining to microcavities of various shapes. This book begins with a chapter on the role of microcavity modes with additional chapters on how these microcavity modes affect the spontaneous and stimulated emission rates, enhance nonlinear optical processes, used in cavity-QED and chemical physics experiments, aid in single-molecule detection, influence the design of microdisk semiconductor lasers, and how deformed cavities can be treated with classical chaos theory.

Book Optical Microcavities

    Book Details:
  • Author : Kerry Vahala
  • Publisher : World Scientific
  • Release : 2004
  • ISBN : 9789812565730
  • Pages : 524 pages

Download or read book Optical Microcavities written by Kerry Vahala and published by World Scientific. This book was released on 2004 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical microcavities are structures that enable confinement of lightto microscale volumes. The universal importance of these structureshas made them indispensable to a wide range of fields. This importantbook describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leadingresearchers from each field

Book Progress in Optics

    Book Details:
  • Author : Emil Wolf
  • Publisher : Elsevier
  • Release : 2000-12-13
  • ISBN : 0444505687
  • Pages : 627 pages

Download or read book Progress in Optics written by Emil Wolf and published by Elsevier. This book was released on 2000-12-13 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Optics Volume 41.

Book Optical Processes in Microparticles and Nanostructures

Download or read book Optical Processes in Microparticles and Nanostructures written by Ali Serpenguzel and published by World Scientific. This book was released on 2011 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift is a tribute to the eminent scholar, Professor Richard Kounai Chang, on his retirement from Yale University on June 12, 2008. During his over four decades of scientific exploration, Professor Chang has made a lasting contribution to the development of linear and nonlinear optics and devices in confined geometries, of surface second-harmonic generation and surface-enhanced Raman scattering, and of novel methods for detecting airborne aerosol pathogens. This volume assembles a collection of articles contributed by former students, collaborators, and colleagues of Professor Chang all over the world. The topics span a diverse scope in applied optics frontiers, many of which are rooted in Professor Chang's pioneering research.

Book Optical Processes in Microparticles and Nanostructures

Download or read book Optical Processes in Microparticles and Nanostructures written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultra high q Optical Microcavities

Download or read book Ultra high q Optical Microcavities written by Yun-feng Xiao and published by World Scientific. This book was released on 2020-10-29 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Confinement and manipulation of photons using microcavities have triggered intense research interest in both basic and applied physics for more than a decade. Prominent examples are whispering gallery microcavities which confine photons by means of continuous total internal reflection along a curved and smooth surface. The long photon lifetime, strong field confinement, and in-plane emission characteristics make them promising candidates for enhancing light-matter interactions on a chip. In this book, we will introduce different ultra-high-Q whispering gallery microcavities, and focus on their applications in enhancing light-matter interaction, such as ultralow-threshold microlasing, highly sensitive optical biosensing, nonlinear optics, cavity quantum electrodynamics and cavity optomechanics.

Book Spontaneous Emission and Laser Oscillation in Microcavities

Download or read book Spontaneous Emission and Laser Oscillation in Microcavities written by Hiroyuki Yokoyama and published by CRC Press. This book was released on 1995-08-30 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: In spite of the increasing importance of microcavities, device physics or the observable phenomena in optical microcavities such as enhanced or inhibited spontaneous emission and its relation with the laser oscillation has not been systematically well-described-until now. Spontaneous Emission and Laser Oscillation in Microcavities presents the basics of optical microcavities. The volume is divided into ten chapters, each written by respected authorities in their areas. The book surveys several methods describing free space spontaneous emission and discusses changes in the feature due to the presence of a cavity. The effect of dephasing of vacuum fields on spontaneous emission in a microcavity and the effects of atomic broadening on spontaneous emission in an optical microcavity are examined. The book details the splitting in transmission peaks of planar microcavities containing semiconductor quantum wells. A simple but useful way to consider the change in the spontaneous emission rate from the viewpoint of mode density alteration by wavelength-sized cavities is provided. Authors also discuss the spontaneous emission in dielectric planar microcavities. Spontaneous emission in microcavity surface emitting lasers is covered, as are the effects of electron confinement in semiconductor quantum wells, wires, and boxes also given. The volume extends the controlling spontaneous emission phenomenon to laser oscillation. Starting from the Fermi golden rule, the microcavity laser rate equations are derived, and the oscillation characteristics are analyzed. Recent progress in optical microcavity experiments is summarized, and the applicability in massively optical parallel processing systems and demands for the device performance are explored. This volume is extremely useful as a textbook for graduate and postgraduate students and works well as a unique reference for researchers beginning to study in the field.

Book Optical Microcavities

Download or read book Optical Microcavities written by Kerry Vahala and published by World Scientific. This book was released on 2004 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.

Book Frontiers In Electronics  From Materials To Systems  1999 Workshop On Frontiers In Electronics

Download or read book Frontiers In Electronics From Materials To Systems 1999 Workshop On Frontiers In Electronics written by Serge Luryi and published by World Scientific. This book was released on 2000-08-07 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid pace of the electronic technology evolution compels a merger of technical areas such as low-power digital electronics, microwave power circuits, optoelectronics, etc., which collectively have become the foundation of today's electronic technology. The 1999 Workshop on Frontiers in Electronics gathered experts from academia, industry, and government agencies to review the recent exciting breakthroughs and their underlying physical mechanisms. The proceedings addresses controversial issues, provocative views, and visionary outlooks. Also included are discussions on the future trends, the directions of electronics technology and the market pulls, as well as the necessary policy and infrastructure changes.

Book Confined Electrons and Photons

Download or read book Confined Electrons and Photons written by Elias Burstein and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.

Book Theory of Optical Processes in Semiconductors

Download or read book Theory of Optical Processes in Semiconductors written by Prasanta Kumar Basu and published by Oxford University Press. This book was released on 2003 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor optoelectronic devices are at the heart of all information generation and processing systems and are likely to be essential components of future optical computers. With more emphasis on optoelectronics and photonics in graduate programmes in physics and engineering, there is aneed for a text providing a basic understanding of the important physical phenomena involved. Such a training is necessary for the design, optimization, and search for new materials, devices, and application areas. This book provides a simple quantum mechanical theory of important optical processes,i.e. band-to-band, intersubband, and excitonic absorption and recombination in bulk, quantum wells, wires, dots, superlattices, and strained layers including electro-optic effects. The classical theory of absorption, quantization of radiation, and band picture based on k.p perturbation has beenincluded to provide the necessary background. Prerequisites for the book are a knowledge of quantum mechanics and solid state theory. Problems have been set at the end of each chapter, some of which may guide the reader to study processes not covered in the book. The application areas of thephenomena are also indicated.

Book Nanoscale Science and Technology

Download or read book Nanoscale Science and Technology written by N. García and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Science and Technology summarizes six years of active research sponsored by NATO with the participation of the leading experts. The book provides an interdisciplinary view of several aspects of physics at the atomic scale. It contains an overview of the latest findings on the transport of electrons in nanowires and nanoconstrictions, the role of forces in probe microscopy, the control of structures and properties in the nanometer range, aspects of magnetization in nanometric structures, and local probes for nondestructive measurement as provided by light and metal clusters near atomic scales.

Book Spectroscopic Properties of Rare Earths in Optical Materials

Download or read book Spectroscopic Properties of Rare Earths in Optical Materials written by Guokui Liu and published by Springer Science & Business Media. This book was released on 2006-01-29 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

Book Trends in Nano  and Micro Cavities

Download or read book Trends in Nano and Micro Cavities written by O'Dae Kwon and published by Bentham Science Publishers. This book was released on 2011-09-10 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ebook is a collection of cutting edge articles from the 2009 Workshop on Microcavities and their Applications (WOMA 2009). It gives readers an overview of state-of-the-art opto electronic research on nano and micro cavities presented by leading exper

Book Green s Function Integral Equation Methods in Nano Optics

Download or read book Green s Function Integral Equation Methods in Nano Optics written by Thomas M. Søndergaard and published by CRC Press. This book was released on 2019-01-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Book Microcavity Semiconductor Lasers

Download or read book Microcavity Semiconductor Lasers written by Yong-zhen Huang and published by John Wiley & Sons. This book was released on 2021-05-24 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microcavity Semiconductor Lasers Explore this thorough overview of integrable microcavity semiconductor lasers and their applications from two leading voices in the field Attracting a great deal of attention over the last decades for their promising applications in photonic integration and optical interconnects, microcavity semiconductor lasers continue to develop via advances in fundamental physics, theoretical analysis, and numerical simulations. In a new work that will be of interest to researchers and practitioners alike, Microcavity Semiconductor Lasers: Principles, Design, and Applications delivers an application-oriented and highly relevant exploration of the theory, fabrication, and applications of these practical devices. The book focuses on unidirectional emission microcavity lasers for photonic integrated circuits, including polygonal microresonators, microdisk, and microring lasers. After an introductory overview of optical microcavities for microlasers and detailed information of the lasers themselves, including mode structure control and characteristics, and lasing properties, the distinguished authors discuss fabrication and applications of different microcavity lasers. Prospects for future research and potential new applications round out the book. Readers will also benefit from the inclusion of: A thorough introduction to multilayer optical waveguides, the FDTD Method, and Padé Approximation, and deformed, chaos, and unidirectional emission microdisk lasers An exploration of mode analysis for triangle and square microresonators similar as FP Cavity Practical discussions of mode analysis and control for deformed square microlasers An examination of hexagonal microcavity lasers and polygonal microcavities, along with vertical radiation loss for 3D microcavities Perfect for laser specialists, semiconductor physicists, and solid-state physicists, Microcavity Semiconductor Lasers: Principles, Design, and Applications will also earn a place in the libraries of materials scientists and professionals working in the semiconductor and optical industries seeking a one-stop reference for integrable microcavity semiconductor lasers.

Book Handbook of Optical Microcavities

Download or read book Handbook of Optical Microcavities written by Anthony H. W. Choi and published by CRC Press. This book was released on 2014-10-06 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range of topics pertaining to resonance in optical cavities and are contributed by leading researchers in the field. The topics include theory, design, simulation, fabrication, and characterization of micrometer- and nanometer-scale structures and devices that support cavity resonance via various mechanisms such as Fabry–Pérot, whispering gallery, photonic bandgap, and plasmonic modes. The chapters discuss optical cavities that resonate from UV to IR wavelengths and are based on prominent III-V material systems, including Al, In, and Ga nitrides, ZnO, and GaAs.