EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book One dimensional Variational Problems

Download or read book One dimensional Variational Problems written by Giuseppe Buttazzo and published by Oxford University Press. This book was released on 1998 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: While easier to solve and accessible to a broader range of students, one-dimensional variational problems and their associated differential equations exhibit many of the same complex behavior of higher-dimensional problems. This book, the first moden introduction, emphasizes direct methods and provides an exceptionally clear view of the underlying theory.

Book Calculus of Variations

Download or read book Calculus of Variations written by Hansjörg Kielhöfer and published by Springer. This book was released on 2018-01-25 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This clear and concise textbook provides a rigorous introduction to the calculus of variations, depending on functions of one variable and their first derivatives. It is based on a translation of a German edition of the book Variationsrechnung (Vieweg+Teubner Verlag, 2010), translated and updated by the author himself. Topics include: the Euler-Lagrange equation for one-dimensional variational problems, with and without constraints, as well as an introduction to the direct methods. The book targets students who have a solid background in calculus and linear algebra, not necessarily in functional analysis. Some advanced mathematical tools, possibly not familiar to the reader, are given along with proofs in the appendix. Numerous figures, advanced problems and proofs, examples, and exercises with solutions accompany the book, making it suitable for self-study. The book will be particularly useful for beginning graduate students from the physical, engineering, and mathematical sciences with a rigorous theoretical background.

Book Branching Solutions to One dimensional Variational Problems

Download or read book Branching Solutions to One dimensional Variational Problems written by Alexander O. Ivanov and published by World Scientific. This book was released on 2001 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the new class of one-dimensional variational problems OCo the problems with branching solutions. Instead of extreme curves (mappings of a segment to a manifold) we investigate extreme networks, which are mappings of graphs (one-dimensional cell complexes) to a manifold. Various applications of the approach are presented, such as several generalizations of the famous Steiner problem of finding the shortest network spanning given points of the plane. Contents: Preliminary Results; Networks Extremality Criteria; Linear Networks in R N; Extremals of Length Type Functionals: The Case of Parametric Networks; Extremals of Functionals Generated by Norms. Readership: Researchers in differential geometry and topology."

Book Convex Analysis and Variational Problems

Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Book Mechanics and Thermodynamics of Continua

Download or read book Mechanics and Thermodynamics of Continua written by Hershel Markovitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reprinted from Archive for Rational Mechanics and Analysis edited by C. Truesdell

Book Variational Analysis

    Book Details:
  • Author : R. Tyrrell Rockafellar
  • Publisher : Springer Science & Business Media
  • Release : 2009-06-26
  • ISBN : 3642024319
  • Pages : 747 pages

Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Book Finite Dimensional Variational Inequalities and Complementarity Problems

Download or read book Finite Dimensional Variational Inequalities and Complementarity Problems written by Francisco Facchinei and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part one of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It covers the basic theory of finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.

Book Variational Methods for Structural Optimization

Download or read book Variational Methods for Structural Optimization written by Andrej Cherkaev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.

Book Geometrical Methods in Variational Problems

Download or read book Geometrical Methods in Variational Problems written by N.A. Bobylov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods. Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.

Book Recent Developments in Well Posed Variational Problems

Download or read book Recent Developments in Well Posed Variational Problems written by Roberto Lucchetti and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve", has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable". These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well posed problem.

Book Nonconvex Optimal Control and Variational Problems

Download or read book Nonconvex Optimal Control and Variational Problems written by Alexander J. Zaslavski and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with “good” functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community.

Book Calculus of Variations I

    Book Details:
  • Author : Mariano Giaquinta
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662032783
  • Pages : 498 pages

Download or read book Calculus of Variations I written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems—such as those of geometric optics—of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book.

Book Lagrange Multiplier Approach to Variational Problems and Applications

Download or read book Lagrange Multiplier Approach to Variational Problems and Applications written by Kazufumi Ito and published by SIAM. This book was released on 2008-11-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyses Lagrange multiplier theory and demonstrates its impact on the development of numerical algorithms for variational problems in function spaces.

Book Variational Problems in Differential Geometry

Download or read book Variational Problems in Differential Geometry written by Roger Bielawski and published by Cambridge University Press. This book was released on 2011-10-20 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.

Book Topological Methods for Variational Problems with Symmetries

Download or read book Topological Methods for Variational Problems with Symmetries written by Thomas Bartsch and published by Springer. This book was released on 2006-11-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetry has a strong impact on the number and shape of solutions to variational problems. This has been observed, for instance, in the search for periodic solutions of Hamiltonian systems or of the nonlinear wave equation; when one is interested in elliptic equations on symmetric domains or in the corresponding semiflows; and when one is looking for "special" solutions of these problems. This book is concerned with Lusternik-Schnirelmann theory and Morse-Conley theory for group invariant functionals. These topological methods are developed in detail with new calculations of the equivariant Lusternik-Schnirelmann category and versions of the Borsuk-Ulam theorem for very general classes of symmetry groups. The Morse-Conley theory is applied to bifurcation problems, in particular to the bifurcation of steady states and hetero-clinic orbits of O(3)-symmetric flows; and to the existence of periodic solutions nearequilibria of symmetric Hamiltonian systems. Some familiarity with the usualminimax theory and basic algebraic topology is assumed.

Book Introduction to the Calculus of Variations

Download or read book Introduction to the Calculus of Variations written by Hans Sagan and published by Courier Corporation. This book was released on 2012-04-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.

Book Variational Analysis in Sobolev and BV Spaces

Download or read book Variational Analysis in Sobolev and BV Spaces written by Hedy Attouch and published by SIAM. This book was released on 2014-10-02 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an excellent guide for anyone interested in variational analysis, optimization, and PDEs. It offers a detailed presentation of the most important tools in variational analysis as well as applications to problems in geometry, mechanics, elasticity, and computer vision. This second edition covers several new topics: new section on capacity theory and elements of potential theory now includes the concepts of quasi-open sets and quasi-continuity; increased number of examples in the areas of linearized elasticity system, obstacles problems, convection-diffusion, and semilinear equations; new section on mass transportation problems and the Kantorovich relaxed formulation of the Monge problem; new subsection on stochastic homogenization establishes the mathematical tools coming from ergodic theory; and an entirely new and comprehensive chapter (17) devoted to gradient flows and the dynamical approach to equilibria. The book is intended for Ph.D. students, researchers, and practitioners who want to approach the field of variational analysis in a systematic way.