EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book One dimensional Mechanistic Modelling of Gas liquid Two Phase Flow in Pipes

Download or read book One dimensional Mechanistic Modelling of Gas liquid Two Phase Flow in Pipes written by Zifan Tang and published by . This book was released on 1991 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic Modeling of Gas liquid Two phase Flow in Pipes

Download or read book Mechanistic Modeling of Gas liquid Two phase Flow in Pipes written by Ovadia Shoham and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objectives of this book are twofold: to provide insight and understanding of two-phase flow phenomena and to develop analytical tools for either designing two-phase flow systems or conducting research in this area. The traditional approach for two-phase flow prediction was based on the development of an empirical correlation from experimental data. This book presents the recent approach, in which mathematical mechanistic models are developed, based on the physical phenomena, to predict two-phase flow behavior. The models can be verified and refined with limited experimental data. However, as these models incorporate the physical phenomena and the important flow variables, they can be extended to different operational conditions and can enable scaleup with significant confidence.

Book Two Phase Gas Liquid Flow in Pipes with Different Orientations

Download or read book Two Phase Gas Liquid Flow in Pipes with Different Orientations written by Afshin J. Ghajar and published by Springer Nature. This book was released on 2020-03-14 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides design engineers using gas-liquid two-phase flow in different industrial applications the necessary fundamental understanding of the two-phase flow variables. Two-phase flow literature reports a plethora of correlations for determination of flow patterns, void fraction, two- phase pressure drop and non-boiling heat transfer correlations. However, the validity of a majority of these correlations is restricted over a narrow range of two -phase flow conditions. Consequently, it is quite a challenging task for the end user to select an appropriate correlation/model for the type of two-phase flow under consideration. Selection of a correct correlation also requires some fundamental understanding of the two-phase flow physics and the underlying principles/assumptions/limitations associated with these correlations. Thus, it is of significant interest for a design engineer to have knowledge of the flow patterns and their transitions and their influence on two-phase flow variables. To address some of these issues and facilitate selection of appropriate two-phase flow models, this volume presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommend some of the well scrutinized modeling techniques.

Book Two phase Gas liquid Flow in Pipes with Different Orientations

Download or read book Two phase Gas liquid Flow in Pipes with Different Orientations written by Afshin Jahanshahi Ghajar and published by . This book was released on 2020 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides design engineers using gas-liquid two-phase flow in different industrial applications the necessary fundamental understanding of the two-phase flow variables. Two-phase flow literature reports a plethora of correlations for determination of flow patterns, void fraction, two- phase pressure drop and non-boiling heat transfer correlations. However, the validity of a majority of these correlations is restricted over a narrow range of two -phase flow conditions. Consequently, it is quite a challenging task for the end user to select an appropriate correlation/model for the type of two-phase flow under consideration. Selection of a correct correlation also requires some fundamental understanding of the two-phase flow physics and the underlying principles/assumptions/limitations associated with these correlations. Thus, it is of significant interest for a design engineer to have knowledge of the flow patterns and their transitions and their influence on two-phase flow variables. To address some of these issues and facilitate selection of appropriate two-phase flow models, this volume presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommend some of the well scrutinized modeling techniques.

Book Integrated Modeling of Reservoir Fluid Properties and Multiphase Flow in Offshore Production Systems

Download or read book Integrated Modeling of Reservoir Fluid Properties and Multiphase Flow in Offshore Production Systems written by Tobias R. Gessner and published by Springer Nature. This book was released on 2023-11-04 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended for practicing engineers in the oil industry, researchers, and graduate students interested in designing and simulating offshore hydrocarbon production systems. It approaches offshore oil production systems from an integrated perspective that combines the modeling of thermophysical properties of reservoir fluids and their flow as a multiphase mixture in wellbores, flow lines, and risers. The first part of the book presents an internally consistent method to compute the critical parameters and acentric factor of Single Carbon Number (SCN) fractions of petroleum mixtures using state-of-the-art multivariate fitting techniques. The procedure is illustrated and validated using flash and differential liberation data from actual field samples. In the second part of the book, mechanistic multiphase flow models are discussed in light of their ability to predict the pressure, temperature, and phase holdup of production fluids in wellbores, flow lines, and risers. Multivariate fitting procedures are again applied to evaluate the sensitivity of the results with respect to closure relationship parameters, such as slug body gas holdup, wall shear stress, and wall roughness in pipelines and production tubing. Finally, the modeling framework is validated using actual field data from offshore production wells.

Book Fundamentals of Gas Lift Engineering

Download or read book Fundamentals of Gas Lift Engineering written by Ali Hernandez and published by Gulf Professional Publishing. This book was released on 2016-02-18 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Gas Lift Engineering: Well Design and Troubleshooting discusses the important topic of oil and gas reservoirs as they continue to naturally deplete, decline, and mature, and how more oil and gas companies are trying to divert their investments in artificial lift methods to help prolong their assets. While not much physically has changed since the invention of the King Valve in the 1940s, new developments in analytical procedures, computational tools and software, and many related technologies have completely changed the way production engineers and well operators face the daily design and troubleshooting tasks and challenges of gas lift, which can now be carried out faster, and in a more accurate and productive way, assuming the person is properly trained. This book fulfills this training need with updates on the latest gas lift designs, troubleshooting techniques, and real-world field case studies that can be applied to all levels of situations, including offshore. Making operational and troubleshooting techniques central to the discussion, the book empowers the engineer, new and experienced, to analyze the challenge involved and make educated adjustments and conclusions in the most economical and practical way. Packed with information on computer utilization, inflow and outflow performance analysis, and worked calculation examples made for training, the book brings fresh air and innovation to a long-standing essential component in a well's lifecycle. - Covers essential gas lift design, troubleshooting, and the latest developments in R&D - Provides real-world field experience and techniques to solve both onshore and offshore challenges - Offers past and present analytical and operational techniques available in an easy-to-read manner - Features information on computer utilization, inflow and outflow performance analysis, and worked calculation training examples

Book Multiphase Transport of Hydrocarbons in Pipes

Download or read book Multiphase Transport of Hydrocarbons in Pipes written by Juan J. Manzano-Ruiz and published by John Wiley & Sons. This book was released on 2024-04-16 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to multiphase flows in the oil and gas industry The term ‘multiphase flow’ refers to the concurrent flow of oil and/or gas, alongside other substances or materials such as production water, chemical inhibitors, and solids (e.g. sand). This is a critical topic in the oil and gas industry, where the presence of multiple flow phases in pipelines affects deliverability, generates serious complications in predicting flow performance for system design and operation, and requires specific risk mitigation actions and continuous maintenance. Chemical and Mechanical Engineers interested in working in this industry will benefit from understanding the basic theories and practices required to model and operate multiphase flows through pipelines, wells, and other components of the production system. Multiphase Transport of Hydrocarbons in Pipes meets this need with a comprehensive overview of five decades of research into multiphase flow. Incorporating fundamental theories, historic and cutting-edge multiphase flow models, and concrete examples of current and future applications. This book provides a sound technical background for prospective or working engineers in need of understanding this crucial area of industry. Readers will also find: Flowcharts to illustrate calculation sequences Detailed tools for estimating multiphase flow rates through flowlines, wells, and more Integration of conservation principles with thermodynamic and transport properties Coverage of legacy and modern simulation models This book is ideal for flow assurance engineers, facilities engineers, oil and gas production engineers, and process engineers, as well as chemical and mechanical engineering students looking to work in any of these roles.

Book Advances in Fluid Mechanics IX

Download or read book Advances in Fluid Mechanics IX written by Matiur Rahman and published by WIT Press. This book was released on 2012 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Containing papers from the Ninth International Conference on Advances in Fluid Mechanics, this book discusses the basic formulations of fluid mechanics and their computer modelling, as well as the relationship between experimental and analytical results. Scientists, engineers, and other professionals interested in the latest developments in theoretical and computational fluid mechanics will find the book a useful addition to the literature. The book covers a wide range of topics, with emphasis on new applications and research currently in progress, including: Computational Methods in Fluid Mechanics, Environmental Fluid Mechanics; Experimental Versus Simulation Methods; Multiphase Flow; Hydraulics and Hydrodynamics; Heat and Mass Transfer; Industrial Applications; Wave Studies; Biofluids; Fluid Structure Interaction.

Book An Introduction to Two Phase Gas liquid Flow

Download or read book An Introduction to Two Phase Gas liquid Flow written by S. William Gouse (Jr) and published by . This book was released on 1964 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: equations of change in integral form; equations of change in differential form; one dimensional flow continuity relations and definitions; analytical models for conservation of momentum and energy; homogeneous flow model; homogeneous flow model example; two-dimensional homogeneous two-phase one-component flow; Martinelli et al two-phase flow model; momentum exchange model; separated phase analytical model; other approaches.

Book Single  and Two Phase Flow Pressure Drop and Heat Transfer in Tubes

Download or read book Single and Two Phase Flow Pressure Drop and Heat Transfer in Tubes written by Afshin J. Ghajar and published by Springer Nature. This book was released on 2022-01-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.

Book Multiphase Flow Handbook  Second Edition

Download or read book Multiphase Flow Handbook Second Edition written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Book Numerical Simulation of Two phase Gas liquid Flows in Inclined and Vertical Pipelines

Download or read book Numerical Simulation of Two phase Gas liquid Flows in Inclined and Vertical Pipelines written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The present thesis describes the advances made in modelling two-phase flows in inclined pipes using a transient one-dimensional approach. The research is a developement of an existing numerical methodology, capable of simulating stratified and slugging two-phase flows in horizontal or inclined single pipes. The aim of the present work is to extend the capabilities of the approach in order (i) to account for the effect of the pipe topography in the numerical solution of the two-fluid model, and (ii) to simulate vertical bubbly twophase flows at various pressures in large diameter pipes, and (iii) to model stratified and terrain-induced slugging in two-phase flow pipelines made of several uphill, downhill and level sections. A transient compressible two-fluid model based on the one-dimensional form of the mass and momentum conservation equations for the gas and liquid phases, is developed to predict those flow configurations. The wall to fluid and the interphase interactions are accounted for by constitutive relations which are flow regime dependent. The conservation equations are discretized using a finite volume method. An algorithm is created to enable simulations on pipelines made of several sections, and account for the effect of the topography in the simulations. The methodology is applied to the compressible model in order to evaluate the robustness and accuracy of the numerical schemes, especially for the high-resolution Advection Upwinding Splitting Method (AUSM) associated to the compressible model. It also assesses the ability of the method to predict three physical flow regimes, namely stratified, bubbly and terrain-induced slug flows. The terrain-induced slugging study is performed on a slightly inclined ("1.5°) V-section system. The use of hydrodynamic slug correlations for hilly-terrain slugging is discussed. It shows to be conclusive with a good agreement with experimental measurements obtained for slug frequency and slug length predictions. Mechanisms.

Book Experimental and Theoretical Advances in Fluid Dynamics

Download or read book Experimental and Theoretical Advances in Fluid Dynamics written by Jaime Klapp and published by Springer Science & Business Media. This book was released on 2011-09-23 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and will be of great use to those involved in either teaching and/or research.

Book Computational Methods in Multiphase Flow VIII

Download or read book Computational Methods in Multiphase Flow VIII written by P. Vorobieff and published by WIT Press. This book was released on 2015-04-20 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology, at all length scales and flow regimes, involving compressible or incompressible linear or nonlinear fluids. The range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The solution of the equations that describe such complex problems often requires a combination of advanced computational and experimental methods. For example, any models developed must be validated through the application of expensive and difficult experimental techniques. Numerous problems in the area thus remain as yet unsolved, including modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. The papers contained in the book were presented at the eighth in a well established series of biennial conferences that began in 2001. They represent close interaction between numerical modellers and other researchers working to gradually resolve the many outstanding issues in understanding of multiphase flow. The papers in the book cover such topics as: Multiphase Flow Simulation; Bubble and Drop Dynamics; Interface Behaviour; Experimental Measurements; Energy Applications; Compressible Flows; Flow in Porous Media; Turbulent Flow; Image Processing; Heat Transfer; Atomization; Hydromagnetics; Plasma; Fluidised Beds; Cavitation.

Book Dynamic Behavior of Pipelines for Marine Applications

Download or read book Dynamic Behavior of Pipelines for Marine Applications written by Ioannis K. Chatjigeorgiou and published by Springer Nature. This book was released on 2023-03-18 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamic behavior of pipelines describes the time-varying continuous response of these structures under extreme effects, that are generated by the surrounding environment (waves and sea currents) and motions imposed by the host floating facility. This book describes all known impacts that affect the behavior and operation of a pipeline conveying an inner flow for underwater applications. "Known Impacts" are those phenomena that are considered important according to practice and experience. Underwater pipelines are typical, unique structures that are attached to unique floating facilities. The design and utilization of underwater pipelines depend strongly on the installation site and the intended application's particulars. It is possible that future technology demands will require us to cope with additional challenges that will be considered important for the design and operation of underwater pipelines, leading inevitably to the enhancement of the "known challenges".

Book Annular Two Phase Flow

Download or read book Annular Two Phase Flow written by Geoffrey Hewitt and published by Elsevier. This book was released on 2013-10-22 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annular Two-Phase Flow presents the wide range of industrial applications of annular two-phase flow regimes. This book discusses the fluid dynamics and heat transfer aspects of the flow pattern. Organized into 12 chapters, this book begins with an overview of the classification of the various types of interface distribution observed in practice. This text then examines the various regimes of two-phase flow with emphasis on the regions of occurrence of the annular flow regime. Other chapters consider the single momentum and energy balances, which illustrate the differences and analogies between single- and two-phase flows. This book discusses as well the simple modes for annular flow with consideration to the calculation of the profile of shear stress in the liquid film. The final chapter deals with the techniques that are developed for the measurement of flow pattern, entrainment, and film thickness. This book is a valuable resource for chemical engineers.

Book Frontiers and Progress in Multiphase Flow I

Download or read book Frontiers and Progress in Multiphase Flow I written by Lixin Cheng and published by Springer Science & Business Media. This book was released on 2014-04-09 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.