EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fluctuations and Interactions of Brownian Particles in Multiple Optical Traps

Download or read book Fluctuations and Interactions of Brownian Particles in Multiple Optical Traps written by Antoine Bérut and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: We experimentally study the fluctuations of Brownian micro-particles trapped with optical tweezers arranged in various spatial configurations. We give a general description of the set-up and detail four different experiments we conducted. We first use a single particle in a double-well potential to model a two-state memory system. We verify the Landauer principle on the minimal energetic cost to erase one bit of information, and we use a detailed version of a fluctuation theorem to retrieve the expected energetic bound. We then use two particles in two different traps to study the hydrodynamic interactions between two systems kept at different effective temperatures. Contrary to what was previously observed, we show that the sol-gel transition of gelatine does not provide any anomalous fluctuations for the trapped particle when the sample is quenched below gelification temperature. However, we show that an effective temperature is created when a well chosen random noise is added on one trap position. We demonstrate that the random forcing on one particle induces an instantaneous correlation between the two particles motions, and an energy exchange from the virtually hot particle to the cold one, which is in equilibrium with the thermal bath. We show a good agreement between the experimental data and the predictions from an hydrodynamic coupling model. Finally, we describe the use of micro-fluidic channels to create a shear flow at the micron size, and we discuss the possibility to interpret the force due to the shear-flow in terms of an effective temperature by testing a fluctuation-dissipation relation.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Feedback Control of MEMS to Atoms

Download or read book Feedback Control of MEMS to Atoms written by Jason J. Gorman and published by Springer Science & Business Media. This book was released on 2011-12-16 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control from MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated systems. The book is organized according to the dimensional scale of the problem, starting with micro-scale systems and ending with atomic-scale systems. Similar to macro-scale machines and processes, control systems can play a major role in improving the performance of micro- and nano-scale systems and in enabling new capabilities that would otherwise not be possible. However, the majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry.

Book Optical Trapping And Manipulation Of Neutral Particles Using Lasers  A Reprint Volume With Commentaries

Download or read book Optical Trapping And Manipulation Of Neutral Particles Using Lasers A Reprint Volume With Commentaries written by Arthur Ashkin and published by World Scientific. This book was released on 2006-12-29 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.

Book Optical Tweezers

    Book Details:
  • Author : Philip H. Jones
  • Publisher : Cambridge University Press
  • Release : 2015-12-03
  • ISBN : 1107051169
  • Pages : 565 pages

Download or read book Optical Tweezers written by Philip H. Jones and published by Cambridge University Press. This book was released on 2015-12-03 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the theory, practice and applications of optical tweezers, combining state-of-the-art research with a strong pedagogic approach.

Book Stochastic Processes in Physics  Chemistry  and Biology

Download or read book Stochastic Processes in Physics Chemistry and Biology written by Jan A. Freund and published by Springer. This book was released on 2008-01-11 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of stochastic processes originally grew out of efforts to describe Brownian motion quantitatively. Today it provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. The credit for acquiring all the deep insights and powerful methods is due ma- ly to a handful of physicists and mathematicians: Einstein, Smoluchowski, Langevin, Wiener, Stratonovich, etc. Hence it is no surprise that until - cently the bulk of basic and applied stochastic research was devoted to purely mathematical and physical questions. However, in the last decade we have witnessed an enormous growth of results achieved in other sciences - especially chemistry and biology - based on applying methods of stochastic processes. One reason for this stochastics boom may be that the realization that noise plays a constructive rather than the expected deteriorating role has spread to communities beyond physics. Besides their aesthetic appeal these noise-induced, noise-supported or noise-enhanced effects sometimes offer an explanation for so far open pr- lems (information transmission in the nervous system and information p- cessing in the brain, processes at the cell level, enzymatic reactions, etc.). They may also pave the way to novel technological applications (noise-- hanced reaction rates, noise-induced transport and separation on the na- scale, etc.). Key words to be mentioned in this context are stochastic r- onance, Brownian motors or ratchets, and noise-supported phenomena in excitable systems.

Book Flowing Matter

    Book Details:
  • Author : Federico Toschi
  • Publisher : Springer Nature
  • Release : 2019-09-25
  • ISBN : 3030233707
  • Pages : 309 pages

Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Book Dynamical Theories of Brownian Motion

Download or read book Dynamical Theories of Brownian Motion written by Edward Nelson and published by Princeton University Press. This book was released on 1967-02-21 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.

Book Optical Trapping and Manipulation of Neutral Particles Using Lasers

Download or read book Optical Trapping and Manipulation of Neutral Particles Using Lasers written by Arthur Ashkin and published by World Scientific Publishing Company Incorporated. This book was released on 2006 with total page 915 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.

Book American Journal of Physics

Download or read book American Journal of Physics written by and published by . This book was released on 2007 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Noise Assisted Effects in Physics and Biophysics Studied by the Optical Trapping Technique

Download or read book Noise Assisted Effects in Physics and Biophysics Studied by the Optical Trapping Technique written by Ignacio A. Martínez Sánchez and published by . This book was released on 2014 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost two centuries after the first observations of Robert Brown, the study of systems ruled by noise has become a significant part of modern physics and other so diverse situations, such as the stock market, personal networks, ecosystems, etc. In particular, we focus on the so-called small systems, where the thermal fluctuations determine the dynamics and energetics of the system. Examples of this scale are biopolymers, such as DNA or RNA, molecular motors, living cells or colloidal particles in suspension. As the energy exchanges between a small system and its environment are of the order of magnitude of thermal fluctuations, apparent violations of the classical laws of thermodynamics appear. We have studied the role of noise in biological and physical systems. As the main experimental tool we have used the optical tweezers technique, which allows one to exert forces in the pN range, as well as to spatially confine the studied objects improving the accuracy of the experiments. A highly focused laser beam creates a time and space controllable optical potential profile. This permitted to investigate noise assisted effects in different scenarios. Two biological systems were considered, namely, single DNA molecule and single bacterium. We showed that the motion of the stretched DNA molecule in the entropic regime (forces below 5 pN) includes an additional noisy component whose spectral power is proportional to 1=f . The presence of this noise may be related with changes of the probability of folding and unfolding events when the DNA strand is extended. On the other hand, we studied the trajectory of single bacteria, whose motion includes inherently noisy components. Using a novel technique with only one optical trap we measured the dynamics of a trapped single bacterium S. enterica. We found that the trajectory within a single trap can reveal the different behavior of the samples. In addition to the validation of our technique, we have characterized the phenotype of mutant cheV in anaerobic conditions. In the second part of the thesis, we studied stochastic thermodynamic using a micron-sized dielectric sphere.The control of the temperature in such experiments has a key importance to understand the energetics of the small systems. We suggested a novel technique to control the kinetic temperature of a sphere by applying of an external force with the same power spectral density (PSD) as one of the thermal noise. We experimentally tested our hypothesis in equilibrium, measuring the position histogram and PSD of the microsphere, and out of equilibrium, implementing a protocole to test Crooks theorem. We conclude that our technique allows one to control the kinetic temperature of a Brownian particle over a wide range of values, from room temperature to several thousand Kelvin with high temporal accuracy. The most obvious application of this technique is the realization of nonisothermal processes. Among them, an adiabatic process is essential although controversial in small systems. We study its meaning in a colloidal particle experiment, paying attention to the consequences of the overdamped approximation. Finally, we could realize for the first time the Carnot cycle, using a colloidal particle in a liquid as a working substance. The effect of the thermal bath is also present in the thermodynamics of information. In the last chapter, we considered the derivation of an universal equivalence between the energetics of a process and the probability of a system to choose it among other options. The obtained expression can be considered a generalization of the Landauer limit. We tested our theory in an experiment where a continuous transition from a single well to a double well potential produces a symmetry breaking affecting a Brownian particle. Moreover, combining two of the process, we were able to achieve the first realization of a Szilard engine based on symmetry breaking and symmetry restoration.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1978 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Galileo Unbound

    Book Details:
  • Author : David D. Nolte
  • Publisher : Oxford University Press
  • Release : 2018-07-12
  • ISBN : 0192528505
  • Pages : 384 pages

Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Book The Physics of Quantum Mechanics

Download or read book The Physics of Quantum Mechanics written by James Binney and published by Oxford University Press, USA. This book was released on 2013-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.

Book Langevin Equation  The  With Applications To Stochastic Problems In Physics  Chemistry And Electrical Engineering  2nd Edition

Download or read book Langevin Equation The With Applications To Stochastic Problems In Physics Chemistry And Electrical Engineering 2nd Edition written by William T Coffey and published by World Scientific. This book was released on 2004-03-03 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the second edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the Brownian motion in a potential, with emphasis on modern applications in the natural sciences, electrical engineering and so on. It has been substantially enlarged to cover in a succinct manner a number of new topics, such as anomalous diffusion, continuous time random walks, stochastic resonance etc, which are of major current interest in view of the large number of disparate physical systems exhibiting these phenomena. The book has been written in such a way that all the material should be accessible to an advanced undergraduate or beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of research papers or scattered review articles.

Book Laser Cooling and Trapping

    Book Details:
  • Author : Harold J. Metcalf
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 146121470X
  • Pages : 329 pages

Download or read book Laser Cooling and Trapping written by Harold J. Metcalf and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.