EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book On the Fundamental Ideas of Measure Theory

Download or read book On the Fundamental Ideas of Measure Theory written by V. A. Rokhlin and published by . This book was released on 1952 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Theory of Measures and Integration

Download or read book The Theory of Measures and Integration written by Eric M. Vestrup and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, clearly organized survey of the basic topics of measure theory for students and researchers in mathematics, statistics, and physics In order to fully understand and appreciate advanced probability, analysis, and advanced mathematical statistics, a rudimentary knowledge of measure theory and like subjects must first be obtained. The Theory of Measures and Integration illuminates the fundamental ideas of the subject-fascinating in their own right-for both students and researchers, providing a useful theoretical background as well as a solid foundation for further inquiry. Eric Vestrup's patient and measured text presents the major results of classical measure and integration theory in a clear and rigorous fashion. Besides offering the mainstream fare, the author also offers detailed discussions of extensions, the structure of Borel and Lebesgue sets, set-theoretic considerations, the Riesz representation theorem, and the Hardy-Littlewood theorem, among other topics, employing a clear presentation style that is both evenly paced and user-friendly. Chapters include: * Measurable Functions * The Lp Spaces * The Radon-Nikodym Theorem * Products of Two Measure Spaces * Arbitrary Products of Measure Spaces Sections conclude with exercises that range in difficulty between easy "finger exercises"and substantial and independent points of interest. These more difficult exercises are accompanied by detailed hints and outlines. They demonstrate optional side paths in the subject as well as alternative ways of presenting the mainstream topics. In writing his proofs and notation, Vestrup targets the person who wants all of the details shown up front. Ideal for graduate students in mathematics, statistics, and physics, as well as strong undergraduates in these disciplines and practicing researchers, The Theory of Measures and Integration proves both an able primary text for a real analysis sequence with a focus on measure theory and a helpful background text for advanced courses in probability and statistics.

Book Measure  Integral and Probability

Download or read book Measure Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Book Measure  Integration   Real Analysis

Download or read book Measure Integration Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/

Book MEASURE THEORY AND PROBABILITY

Download or read book MEASURE THEORY AND PROBABILITY written by A. K. BASU and published by PHI Learning Pvt. Ltd.. This book was released on 2012-04-21 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compact and well-received book, now in its second edition, is a skilful combination of measure theory and probability. For, in contrast to many books where probability theory is usually developed after a thorough exposure to the theory and techniques of measure and integration, this text develops the Lebesgue theory of measure and integration, using probability theory as the motivating force. What distinguishes the text is the illustration of all theorems by examples and applications. A section on Stieltjes integration assists the student in understanding the later text better. For easy understanding and presentation, this edition has split some long chapters into smaller ones. For example, old Chapter 3 has been split into Chapters 3 and 9, and old Chapter 11 has been split into Chapters 11, 12 and 13. The book is intended for the first-year postgraduate students for their courses in Statistics and Mathematics (pure and applied), computer science, and electrical and industrial engineering. KEY FEATURES : Measure theory and probability are well integrated. Exercises are given at the end of each chapter, with solutions provided separately. A section is devoted to large sample theory of statistics, and another to large deviation theory (in the Appendix).

Book Probability and Measure

    Book Details:
  • Author : Patrick Billingsley
  • Publisher : John Wiley & Sons
  • Release : 2017
  • ISBN : 9788126517718
  • Pages : 612 pages

Download or read book Probability and Measure written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2017 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes

Book Generalized Measure Theory

Download or read book Generalized Measure Theory written by Zhenyuan Wang and published by Springer Science & Business Media. This book was released on 2010-07-07 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.

Book Geometric Integration Theory

Download or read book Geometric Integration Theory written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

Book Measure Theory and Probability Theory

Download or read book Measure Theory and Probability Theory written by Krishna B. Athreya and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Book Geometric Measure Theory and the Calculus of Variations

Download or read book Geometric Measure Theory and the Calculus of Variations written by William K. Allard and published by American Mathematical Soc.. This book was released on 1986 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes twenty-six papers that survey a cross section of work in modern geometric measure theory and its applications in the calculus of variations. This title provides an access to the material, including introductions and summaries of many of the authors' much longer works and a section containing 80 open problems in the field.

Book Measure and Integration

Download or read book Measure and Integration written by M Thamban Nair and published by CRC Press. This book was released on 2019-11-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text is intended as an introductory course in measure and integration. It covers essentials of the subject, providing ample motivation for new concepts and theorems in the form of discussion and remarks, and with many worked-out examples. The novelty of Measure and Integration: A First Course is in its style of exposition of the standard material in a student-friendly manner. New concepts are introduced progressively from less abstract to more abstract so that the subject is felt on solid footing. The book starts with a review of Riemann integration as a motivation for the necessity of introducing the concepts of measure and integration in a general setting. Then the text slowly evolves from the concept of an outer measure of subsets of the set of real line to the concept of Lebesgue measurable sets and Lebesgue measure, and then to the concept of a measure, measurable function, and integration in a more general setting. Again, integration is first introduced with non-negative functions, and then progressively with real and complex-valued functions. A chapter on Fourier transform is introduced only to make the reader realize the importance of the subject to another area of analysis that is essential for the study of advanced courses on partial differential equations. Key Features Numerous examples are worked out in detail. Lebesgue measurability is introduced only after convincing the reader of its necessity. Integrals of a non-negative measurable function is defined after motivating its existence as limits of integrals of simple measurable functions. Several inquisitive questions and important conclusions are displayed prominently. A good number of problems with liberal hints is provided at the end of each chapter. The book is so designed that it can be used as a text for a one-semester course during the first year of a master's program in mathematics or at the senior undergraduate level. About the Author M. Thamban Nair is a professor of mathematics at the Indian Institute of Technology Madras, Chennai, India. He was a post-doctoral fellow at the University of Grenoble, France through a French government scholarship, and also held visiting positions at Australian National University, Canberra, University of Kaiserslautern, Germany, University of St-Etienne, France, and Sun Yat-sen University, Guangzhou, China. The broad area of Prof. Nair’s research is in functional analysis and operator equations, more specifically, in the operator theoretic aspects of inverse and ill-posed problems. Prof. Nair has published more than 70 research papers in nationally and internationally reputed journals in the areas of spectral approximations, operator equations, and inverse and ill-posed problems. He is also the author of three books: Functional Analysis: A First Course (PHI-Learning, New Delhi), Linear Operator Equations: Approximation and Regularization (World Scientific, Singapore), and Calculus of One Variable (Ane Books Pvt. Ltd, New Delhi), and he is also co-author of Linear Algebra (Springer, New York).

Book A Radical Approach to Lebesgue s Theory of Integration

Download or read book A Radical Approach to Lebesgue s Theory of Integration written by David M. Bressoud and published by Cambridge University Press. This book was released on 2008-01-21 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.

Book Measure Theory

Download or read book Measure Theory written by D. H. Fremlin and published by Torres Fremlin. This book was released on 2000 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Ergodic Theory

Download or read book Lectures on Ergodic Theory written by Paul R. Halmos and published by Courier Dover Publications. This book was released on 2017-12-13 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise classic by Paul R. Halmos, a well-known master of mathematical exposition, has served as a basic introduction to aspects of ergodic theory since its first publication in 1956. "The book is written in the pleasant, relaxed, and clear style usually associated with the author," noted the Bulletin of the American Mathematical Society, adding, "The material is organized very well and painlessly presented." Suitable for advanced undergraduates and graduate students in mathematics, the treatment covers recurrence, mean and pointwise convergence, ergodic theorem, measure algebras, and automorphisms of compact groups. Additional topics include weak topology and approximation, uniform topology and approximation, invariant measures, unsolved problems, and other subjects.

Book Introdction to Measure and Probability

Download or read book Introdction to Measure and Probability written by J. F. C. Kingman and published by Cambridge University Press. This book was released on 2008-11-20 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development.

Book An Introduction to Measure theoretic Probability

Download or read book An Introduction to Measure theoretic Probability written by George G. Roussas and published by Gulf Professional Publishing. This book was released on 2005 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas, should be equipped with. The approach is classical, avoiding the use of mathematical tools not necessary for carrying out the discussions. All proofs are presented in full detail. * Excellent exposition marked by a clear, coherent and logical devleopment of the subject * Easy to understand, detailed discussion of material * Complete proofs