Download or read book NumPy Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2012-10-25 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Download or read book NumPy Beginner s Guide Second Edition written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2013-04-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is written in beginner’s guide style with each aspect of NumPy demonstrated with real world examples and required screenshots.If you are a programmer, scientist, or engineer who has basic Python knowledge and would like to be able to do numerical computations with Python, this book is for you. No prior knowledge of NumPy is required.
Download or read book Python Data Analysis Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2016-07-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Download or read book Bioinformatics with Python Cookbook written by Tiago Antao and published by Packt Publishing Ltd. This book was released on 2022-09-27 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover modern, next-generation sequencing libraries from the powerful Python ecosystem to perform cutting-edge research and analyze large amounts of biological data Key Features Perform complex bioinformatics analysis using the most essential Python libraries and applications Implement next-generation sequencing, metagenomics, automating analysis, population genetics, and much more Explore various statistical and machine learning techniques for bioinformatics data analysis Book Description Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data, and this book will show you how to manage these tasks using Python. This updated third edition of the Bioinformatics with Python Cookbook begins with a quick overview of the various tools and libraries in the Python ecosystem that will help you convert, analyze, and visualize biological datasets. Next, you'll cover key techniques for next-generation sequencing, single-cell analysis, genomics, metagenomics, population genetics, phylogenetics, and proteomics with the help of real-world examples. You'll learn how to work with important pipeline systems, such as Galaxy servers and Snakemake, and understand the various modules in Python for functional and asynchronous programming. This book will also help you explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks, including Dask and Spark. In addition to this, you'll explore the application of machine learning algorithms in bioinformatics. By the end of this bioinformatics Python book, you'll be equipped with the knowledge you need to implement the latest programming techniques and frameworks, empowering you to deal with bioinformatics data on every scale. What you will learn Become well-versed with data processing libraries such as NumPy, pandas, arrow, and zarr in the context of bioinformatic analysis Interact with genomic databases Solve real-world problems in the fields of population genetics, phylogenetics, and proteomics Build bioinformatics pipelines using a Galaxy server and Snakemake Work with functools and itertools for functional programming Perform parallel processing with Dask on biological data Explore principal component analysis (PCA) techniques with scikit-learn Who this book is for This book is for bioinformatics analysts, data scientists, computational biologists, researchers, and Python developers who want to address intermediate-to-advanced biological and bioinformatics problems. Working knowledge of the Python programming language is expected. Basic knowledge of biology will also be helpful.
Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2018-01-31 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Download or read book NumPy Beginner s Guide written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2015-06-24 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today's world of science and technology, it's all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy will give you both speed and high productivity. This book will walk you through NumPy with clear, step-by-step examples and just the right amount of theory. The book focuses on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples. You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier transform, finding the inverse of a matrix, and determining eigenvalues, among many others. This book is a one-stop solution to knowing the ins and outs of the vast NumPy library, empowering you to use its wide range of mathematical features to build efficient, high-speed programs.
Download or read book Python Cookbook written by David Beazley and published by "O'Reilly Media, Inc.". This book was released on 2013-05-10 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you need help writing programs in Python 3, or want to update older Python 2 code, this book is just the ticket. Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms. Inside, youâ??ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works. Topics include: Data Structures and Algorithms Strings and Text Numbers, Dates, and Times Iterators and Generators Files and I/O Data Encoding and Processing Functions Classes and Objects Metaprogramming Modules and Packages Network and Web Programming Concurrency Utility Scripting and System Administration Testing, Debugging, and Exceptions C Extensions
Download or read book Learning SciPy for Numerical and Scientific Computing Second Edition written by Sergio J. Rojas G. and published by Packt Publishing Ltd. This book was released on 2015-02-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
Download or read book Polars Cookbook written by Yuki Kakegawa and published by Packt Publishing Ltd. This book was released on 2024-08-23 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage a lightning fast DataFrame library for efficient data wrangling in Python Key Features Unlock the power of Python Polars for faster and more efficient data analysis workflows Master the fundamentals of Python Polars with step-by-step recipes Discover data manipulation techniques to apply across multiple data problems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPolars Cookbook is a complete guide that not only helps you get started with Python Polars but also gives you effective solutions to your day-to-day data problems. Dive into the world of Polars, a high-performance DataFrame library designed for efficient data processing and analysis. This cookbook takes a practical approach to unlocking the full potential of Polars through detailed, step-by-step recipes. Starting with installation and basic operations, this book guides you through data manipulation, advanced querying, and performance optimization techniques. You’ll learn how to handle large datasets, perform complex transformations, and leverage Polars’ powerful features for data science tasks. As you progress, you’ll explore Polars’ integration with other tools and libraries, and discover how to deploy Polars in both onpremises and cloud environments. You’ll also explore use cases for data engineering, time series analysis, statistical analysis, and machine learning, providing essential strategies for securing and optimizing your Polars workflows. By the end of this book, you’ll have acquired the knowledge and skills to build scalable, efficient, and reliable data processing solutions using Polars.What you will learn Read from different data sources and write to various files and databases Apply aggregations, window functions, and string manipulations Perform common data tasks such as handling missing values and performing list and array operations Discover how to reshape and tidy your data by pivoting, joining, and concatenating Analyze your time series data in Python Polars Create better workflows with testing and debugging Who this book is for This book is for data analysts, data scientists, and data engineers who want to learn how to use Polars in their workflows. Working knowledge of the Python programming language is required. Experience working with a DataFrame library such as pandas or PySpark will also be helpful.
Download or read book Python Machine Learning Cookbook written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2019-03-30 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key FeaturesLearn and implement machine learning algorithms in a variety of real-life scenariosCover a range of tasks catering to supervised, unsupervised and reinforcement learning techniquesFind easy-to-follow code solutions for tackling common and not-so-common challengesBook Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learnUse predictive modeling and apply it to real-world problemsExplore data visualization techniques to interact with your dataLearn how to build a recommendation engineUnderstand how to interact with text data and build models to analyze itWork with speech data and recognize spoken words using Hidden Markov ModelsGet well versed with reinforcement learning, automated ML, and transfer learningWork with image data and build systems for image recognition and biometric face recognitionUse deep neural networks to build an optical character recognition systemWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.
Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2018-12-24 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Download or read book Learning NumPy Array written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2014-06-13 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
Download or read book Python Data Visualization Cookbook written by Igor Milovanovic and published by Packt Publishing Ltd. This book was released on 2015-11-30 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 70 recipes to get you started with popular Python libraries based on the principal concepts of data visualization About This Book Learn how to set up an optimal Python environment for data visualization Understand how to import, clean and organize your data Determine different approaches to data visualization and how to choose the most appropriate for your needs Who This Book Is For If you already know about Python programming and want to understand data, data formats, data visualization, and how to use Python to visualize data then this book is for you. What You Will Learn Introduce yourself to the essential tooling to set up your working environment Explore your data using the capabilities of standard Python Data Library and Panda Library Draw your first chart and customize it Use the most popular data visualization Python libraries Make 3D visualizations mainly using mplot3d Create charts with images and maps Understand the most appropriate charts to describe your data Know the matplotlib hidden gems Use plot.ly to share your visualization online In Detail Python Data Visualization Cookbook will progress the reader from the point of installing and setting up a Python environment for data manipulation and visualization all the way to 3D animations using Python libraries. Readers will benefit from over 60 precise and reproducible recipes that will guide the reader towards a better understanding of data concepts and the building blocks for subsequent and sometimes more advanced concepts. Python Data Visualization Cookbook starts by showing how to set up matplotlib and the related libraries that are required for most parts of the book, before moving on to discuss some of the lesser-used diagrams and charts such as Gantt Charts or Sankey diagrams. Initially it uses simple plots and charts to more advanced ones, to make it easy to understand for readers. As the readers will go through the book, they will get to know about the 3D diagrams and animations. Maps are irreplaceable for displaying geo-spatial data, so this book will also show how to build them. In the last chapter, it includes explanation on how to incorporate matplotlib into different environments, such as a writing system, LaTeX, or how to create Gantt charts using Python. Style and approach A step-by-step recipe based approach to data visualization. The topics are explained sequentially as cookbook recipes consisting of a code snippet and the resulting visualization.
Download or read book Python Geospatial Analysis Cookbook written by Michael Diener and published by Packt Publishing Ltd. This book was released on 2015-11-30 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 60 recipes to work with topology, overlays, indoor routing, and web application analysis with Python About This Book Explore the practical process of using geospatial analysis to solve simple to complex problems with reusable recipes Concise step-by-step instructions to teach you about projections, vector, raster, overlay, indoor routing and topology analysis Create a basic indoor routing application with geodjango Who This Book Is For If you are a student, teacher, programmer, geospatial or IT administrator, GIS analyst, researcher, or scientist looking to do spatial analysis, then this book is for you. Anyone trying to answer simple to complex spatial analysis questions will get a working demonstration of the power of Python with real-world data. Some of you may be beginners with GIS, but most of you will probably have a basic understanding of geospatial analysis and programming. What You Will Learn Discover the projection and coordinate system information of your data and learn how to transform that data into different projections Import or export your data into different data formats to prepare it for your application or spatial analysis Use the power of PostGIS with Python to take advantage of the powerful analysis functions Execute spatial analysis functions on vector data including clipping, spatial joins, measuring distances, areas, and combining data to new results Create your own set of topology rules to perform and ensure quality assurance rules in Python Find the shortest indoor path with network analysis functions in easy, extensible recipes revolving around all kinds of network analysis problems Visualize your data on a map using the visualization tools and methods available to create visually stunning results Build an indoor routing web application with GeoDjango to include your spatial analysis tools built from the previous recipes In Detail Geospatial development links your data to places on the Earth's surface. Its analysis is used in almost every industry to answer location type questions. Combined with the power of the Python programming language, which is becoming the de facto spatial scripting choice for developers and analysts worldwide, this technology will help you to solve real-world spatial problems. This book begins by tackling the installation of the necessary software dependencies and libraries needed to perform spatial analysis with Python. From there, the next logical step is to prepare our data for analysis; we will do this by building up our tool box to deal with data preparation, transformations, and projections. Now that our data is ready for analysis, we will tackle the most common analysis methods for vector and raster data. To check or validate our results, we will explore how to use topology checks to ensure top-quality results. This is followed with network routing analysis focused on constructing indoor routes within buildings, over different levels. Finally, we put several recipes together in a GeoDjango web application that demonstrates a working indoor routing spatial analysis application. The round trip will provide you all the pieces you need to accomplish your own spatial analysis application to suit your requirements. Style and approach Easy-to-follow, step-by-step recipes, explaining from start to finish how to accomplish real-world tasks.
Download or read book Python Feature Engineering Cookbook written by Soledad Galli and published by Packt Publishing Ltd. This book was released on 2020-01-22 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.
Download or read book Pandas Cookbook written by William Ayd and published by Packt Publishing Ltd. This book was released on 2024-10-31 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: From fundamental techniques to advanced strategies for handling big data, visualization, and more, this book equips you with skills to excel in real-world data analysis projects. Key Features This book targets features in pandas 2.x and beyond Practical, easy to implement recipes for quick solutions to common problems in data using pandas Master the fundamentals of pandas to quickly begin exploring any dataset Book DescriptionThe pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands as one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through situations that you are highly likely to encounter. With this latest edition unlock the full potential of pandas 2.x onwards. Whether you're a beginner or an experienced data analyst, this book offers a wealth of practical recipes to help you excel in your data analysis projects. This cookbook covers everything from fundamental data manipulation tasks to advanced techniques for handling big data, visualization, and more. Each recipe is designed to address common real-world challenges, providing clear explanations and step-by-step instructions to guide you through the process. Explore cutting-edge topics such as idiomatic pandas coding, efficient handling of large datasets, and advanced data visualization techniques. Whether you're looking to sharpen or expand your skills, the "Pandas Cookbook" is your essential companion for mastering data analysis and manipulation with pandas 2.x, and beyond.What you will learn The pandas type system and how to best navigate it Import/export DataFrames to/from common data formats Data exploration in pandas through dozens of practice problems Grouping, aggregation, transformation, reshaping, and filtering data Merge data from different sources through pandas SQL-like operations Leverage the robust pandas time series functionality in advanced analyses Scale pandas operations to get the most out of your system The large ecosystem that pandas can coordinate with and supplement Who this book is for This book is for Python developers, data scientists, engineers, and analysts. pandas is the ideal tool for manipulating structured data with Python and this book provides ample instruction and examples. Not only does it cover the basics required to be proficient, but it goes into the details of idiomatic pandas
Download or read book QGIS Python Programming Cookbook written by Joel Lawhead and published by Packt Publishing Ltd. This book was released on 2017-03-14 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master over 170 recipes that will help you turn QGIS from a desktop GIS tool into a powerful automated geospatial framework About This Book Delve into the undocumented features of the QGIS API Get a set of user-friendly recipes that can automate entire geospatial workflows by connecting Python GIS building blocks into comprehensive processes This book has a complete code upgrade to QGIS 2.18 and 30 new, valuable recipes Who This Book Is For This book is for geospatial analysts who want to learn more about automating everyday GIS tasks as well as programmers responsible for building GIS applications. The short, reusable recipes make concepts easy to understand and combine so you can build larger applications that are easy to maintain. What You Will Learn Use Python and QGIS to produce captivating GIS visualizations and build complex map layouts Find out how to effectively use the poorly-documented and undocumented features of the QGIS Python API Automate entire geospatial workflows by connecting Python GIS building blocks into comprehensive processes Create, import, and edit geospatial data on disk or in-memory Change QGIS settings programmatically to control default behavior Automatically generate PDF map books Build dynamic forms for field input In Detail QGIS is a desktop geographic information system that facilitates data viewing, editing, and analysis. Paired with the most efficient scripting language—Python, we can write effective scripts that extend the core functionality of QGIS. Based on version QGIS 2.18, this book will teach you how to write Python code that works with spatial data to automate geoprocessing tasks in QGIS. It will cover topics such as querying and editing vector data and using raster data. You will also learn to create, edit, and optimize a vector layer for faster queries, reproject a vector layer, reduce the number of vertices in a vector layer without losing critical data, and convert a raster to a vector. Following this, you will work through recipes that will help you compose static maps, create heavily customized maps, and add specialized labels and annotations. As well as this, we'll also share a few tips and tricks based on different aspects of QGIS. Style and approach This book follows a recipe-based problem-solution approach to address and dispel challenges faced when implementing and using QGIS on a regular basis.