Download or read book Numerical Solutions of Realistic Nonlinear Phenomena written by J. A. Tenreiro Machado and published by Springer Nature. This book was released on 2020-02-19 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers new aspects of numerical methods in applied mathematics, engineering, and health sciences. It provides recent theoretical developments and new techniques based on optimization theory, partial differential equations (PDEs), mathematical modeling and fractional calculus that can be used to model and understand complex behavior in natural phenomena. Specific topics covered in detail include new numerical methods for nonlinear partial differential equations, global optimization, unconstrained optimization, detection of HIV- Protease, modelling with new fractional operators, analysis of biological models, and stochastic modelling.
Download or read book Nonlinear Phenomena in the Ionosphere written by A. Gurevich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear effects in the ionosphere (cross modulation of radio waves) have been known since the 1930s. Only recently, however, has the rapid increase in the power and directivity of the radio transmitters made it possible to alter the properties of the ionosphere strongly and to modify it artificially by applying radio waves. This has revealed a variety of new physical phenomena. Their study is not only of scien tific interest but also undisputedly of practical interest, and is presently progressing very rapidly. This monograph is devoted to an exposition of the present status of theoretical research on this problem. Particular attention is paid, naturally, to problems in the development of which the author himself took part. It is my pleasant duty to thank V. L. Ginzburg, L. P. Pitaevskii, V. V. Vas'kov, E. E. Tsedilina, A. B. Shvartsburg, and Va. S. Dimant for useful discussions and for valuable remarks during various stages of the work on the problem considered in this book. Contents 1. Introduction . . . . . . . . . . . . . . . . . . .
Download or read book The Optimal Homotopy Asymptotic Method written by Vasile Marinca and published by Springer. This book was released on 2015-04-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
Download or read book Nonlinear Physics with Maple for Scientists and Engineers written by Richard Enns and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.
Download or read book Molecular Electronics and Molecular Electronic Devices written by Kristof Sienicki and published by CRC Press. This book was released on 1993-09-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books will be an excellent reference for physicists, chemists, electronics engineers and researchers interested in molecular electronics and molecular electronic devices.
Download or read book Advances In The Homotopy Analysis Method written by Shijun Liao and published by World Scientific. This book was released on 2013-11-26 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity.This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications.
Download or read book Nonlinear Phenomena in Mathematical Sciences written by V. Lakshmikantham and published by Elsevier. This book was released on 2014-05-12 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.
Download or read book Advanced Methods of Structural Analysis written by Igor A. Karnovsky and published by Springer Nature. This book was released on 2021-03-16 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.
Download or read book Nonlinear Hyperbolic Problems Theoretical Applied and Computational Aspects written by Andrea Donato and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book NUREG CR written by U.S. Nuclear Regulatory Commission and published by . This book was released on 1980 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Robust Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2008-09-17 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.
Download or read book Numerical Methods with Chemical Engineering Applications written by Kevin D. Dorfman and published by Cambridge University Press. This book was released on 2017-01-11 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook integrates the teaching of numerical methods and programming with problems from core chemical engineering subjects.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Element Methods in Heat Transfer written by Wrobel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer problems in industry are usually of a very complex nature, simultaneously involving different transfer modes such as conduction, convection, radiation and others. Because of this, very few problems can be solved analytically and one generally has to resort to numerical analysis. The boundary element method is a numerical technique which has been receiving growing attention for solving heat transfer problems because of its unique ability to confine the discretization process to the boundaries of the problem region. This allows major reductions in the data preparation and computer effort necessary to solve complex industrial problems. The purpose of this book is to present efficient algorithms used in conjunction with the boundary element method for the solution of steady and transient, linear and non-linear heat transfer problems. It represents the state-of-the-art of boundary element applications in the field of heat transfer, and constitutes essential reading for researchers and practising engineers involved with this important topic.
Download or read book Applications of Nonlinear Analysis written by Themistocles M. Rassias and published by Springer. This book was released on 2018-06-29 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.
Download or read book Wave Propagation in Electromagnetic Media written by Julian L. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
Download or read book Textbook on Ordinary Differential Equations written by Ramakanta Meher and published by CRC Press. This book was released on 2022-12-29 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many scientific and real-world problems that occur in science, engineering, and medicine can be represented in differential equations. There is a vital role for differential equations in studying the behavior of different types of real-world problems. Thus, it becomes crucial to know the existence and uniqueness properties of differential equations and various methods of finding differential equation solutions in explicit form. It is also essential to know different kinds of differential equations in terms of eigenvalues, termed eigenvalue problems, and some special functions used in finding the solution to differential equations. The study of nonlinear problems also plays a significant role in different real-world situations. There is a necessity to know the behavior of solutions of nonlinear differential equations. Still, there are very few forms of differential equations whose solution can be found in explicit form. For the differential equations whose solutions cannot be found in explicit form, one has to study the properties of solutions of the given differential equation to guess an approximate solution of it. This book aims to introduce all the necessary topics of differential equations in one book so that laymen can easily understand the subject and apply it in their research areas. The novel approach used in this book is the introduction of different analytical methods for finding the solution of differential equations with sufficient theorems, corollaries, and examples, and the geometrical interpretations in each topic. This textbook is intended to study the theory and methods of finding the explicit solutions to differential equations, wherever possible, and in the absence of finding explicit solutions, it is intended to study the properties of solutions to the given differential equations. This book is based on syllabi of the theory of differential equations prescribed for postgraduate students of mathematics and applied mathematics in different institutions and universities of India and abroad. This book will be helpful for competitive examinations as well.