EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamics of Driven and Spontaneous Transport Barriers in the Edge Plasma of Tokamaks

Download or read book Dynamics of Driven and Spontaneous Transport Barriers in the Edge Plasma of Tokamaks written by Nicolas Nace and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermonuclear fusion reactors are one of the mid to long term solutions to transit towards a world dominated by carbon-free energy. Extreme temperatures are required for fusion reactions and the plasma of hydrogen isotopes must be magnetically confined in a torus shape. Sustaining such high level of particle and energy confinements is a key issue. Reactors are expected to operate in a high confinement regime - the H-mode - in which turbulent transport is reduced by the presence of a transport barrier in the edge plasma. This regime is observed in all current devices but remains largely miss-understood. In this thesis, we investigate several mechanisms involved in the transition towards H-mode. For that purpose, we use a range of numerical simulation tools of increasing complexity. Using simple models, we first highlight and analyze basic mechanisms likely to play a role in the on-set of transport barriers and in their impact on turbulence. Moving progressively to more complex models, we discuss the relevance of these physics in explaining experimental observations. The magnetic geometry and especially the magnetic shear are pointed out as key players.

Book Turbulent Transport In Magnetized Plasmas  Second Edition

Download or read book Turbulent Transport In Magnetized Plasmas Second Edition written by C Wendell Horton, Jr and published by #N/A. This book was released on 2017-07-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.

Book Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration

Download or read book Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration written by Davide Galassi and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear fusion could offer a new source of stable, non-CO2 emitting energy. Today, tokamaks offer the best performance by confining a high temperature plasma by means of a magnetic field. Two of the major technological challenges for the operation of tokamaks are the power extraction and the confinement of plasma over long periods. These issues are associated with the transport of particles and heat, which is determined by turbulence, from the central plasma to the edge zone. In this thesis, we model turbulence in the edge plasma. We study in particular the divertor configuration, in which the central plasma is isolated from the walls by means of an additional magnetic field. This complex magnetic geometry is simulated with the fluid turbulence code TOKAM3X, developed in collaboration between the IRFM at CEA and the M2P2 laboratory of the University of Aix-Marseille.A comparison with simulations in simplified geometry shows a similar intermittent nature of turbulence. Nevertheless, the amplitude of the fluctuations, which has a maximum at the equatorial plane, is greatly reduced near the X-point, where the field lines become purely toroidal, in agreement with the recent experimental data. The simulations in divertor configuration show a significantly higher confinement than in circular geometry. A partial inhibition of the radial transport of particles at the X-point contributes to this improvement. This mechanism is potentially important for understanding the transition from low confinement mode to high confinement mode, the intended operational mode for ITER.

Book Model Reduction for Tokamak Plasma Turbulence

Download or read book Model Reduction for Tokamak Plasma Turbulence written by Camille Gillot and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control of tokamak plasmas requires efficient and accurate prediction of heat and matter transport. Growing from kinetic resonant instabilities, turbulence saturates by involving many scales, from the small vortex up to the back-reaction on the density and temperature profiles. Self-organisation processes are of particular interest, encompassing spontaneous zonal flow genera- tion and transport by avalanche. First principle numerical simulation codes like GYSELA allow studying the gyro-kinetic evolution of the particle distribution function. The large model size and cost prompts the need for reduction. Removing velocity dimensions is the so-called collisionless closure problem for fluid equations. Earlier approaches are extended and generalised by calling to the dynamical systems and optimal control litterature. In particular, we apply the balanced truncation and rational interpolation to the one-dimensional linear VlasovPoisson problem. The interpolation method features a cheap and versatile formulation, opening the door to wider use for more complex phenomena. Quasi-linear theory is the reference model for turbulent effects. The GYSELA three-dimensional output is analysed to estimate the robustness of linear properties in turbulent filaments. Key quasi-linear quantities carry over to the non-linear regime. Effective velocities and shape of turbulent structures are computed, and match expected group velocities and linear eigenmode. Nevertheless, the turbulent potential spectrum must be specified externally to quasi- linear models. This results in radially travelling unstable linear solutions that share many properties of turbulent avalanches seen in numerical simulations.

Book The Numerical Tokamak Project  NTP  Simulation of Turbulent Transport in the Core Plasma

Download or read book The Numerical Tokamak Project NTP Simulation of Turbulent Transport in the Core Plasma written by and published by . This book was released on 1993 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model's on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy's theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

Book Cross field Particle Transport in the Edge of Plasma of Tokamak Experiments and Implications for ITER

Download or read book Cross field Particle Transport in the Edge of Plasma of Tokamak Experiments and Implications for ITER written by Brian LaBombard and published by . This book was released on 2003 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle transport in the edge plasma and scrape-off layer will play a key role in the performance and operation of a tokamak fusion reactor: setting the width of the scrape-off layer density profile and its impurity screening characteristics, regulating the energetic particle fluxes onto first-wall components and associated impurity generation rates, and determining the effectiveness of the divertor in receiving particle exhaust and controlling neutral pressures in the main-chamber. The processes which govern particle transport involve plasma turbulence, phenomena which can not yet be reliably computed from a first-principles numerical simulation. Thus, in order to project to a reactor-scale experiment, such as ITER, one must first develop an understanding of particle transport phenomena based on experimental measurements in existing plasma fusion devices. Over the past few years of research, a number of fundamental advances in the understanding of the cross-field particle transport physics have occurred, replacing crude, incorrect, and often misleading transport models such as the "constant diffusion coefficient" model with a more appropriate description of the phenomenon. It should be noted that this description applies to transport processes in the absence of ELM phenomenon, i.e., physics underlying the "background" plasma state. In this letter, we first review the experimental support for this understanding which is based extensively on data from L-mode discharges and from H-mode discharges at time intervals without ELMs. We then comment on its implications for ITER.

Book An Assessment of the Department of Energy s Office of Fusion Energy Sciences Program

Download or read book An Assessment of the Department of Energy s Office of Fusion Energy Sciences Program written by National Research Council and published by National Academies Press. This book was released on 2001-05-07 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this assessment of the fusion energy sciences program of the Department of Energy's (DOE's) Office of Science is to evaluate the quality of the research program and to provide guidance for the future program strategy aimed at strengthening the research component of the program. The committee focused its review of the fusion program on magnetic confinement, or magnetic fusion energy (MFE), and touched only briefly on inertial fusion energy (IFE), because MFE-relevant research accounts for roughly 95 percent of the funding in the Office of Science's fusion program. Unless otherwise noted, all references to fusion in this report should be assumed to refer to magnetic fusion. Fusion research carried out in the United States under the sponsorship of the Office of Fusion Energy Sciences (OFES) has made remarkable strides over the years and recently passed several important milestones. For example, weakly burning plasmas with temperatures greatly exceeding those on the surface of the Sun have been created and diagnosed. Significant progress has been made in understanding and controlling instabilities and turbulence in plasma fusion experiments, thereby facilitating improved plasma confinement-remotely controlling turbulence in a 100-million-degree medium is a premier scientific achievement by any measure. Theory and modeling are now able to provide useful insights into instabilities and to guide experiments. Experiments and associated diagnostics are now able to extract enough information about the processes occurring in high-temperature plasmas to guide further developments in theory and modeling. Many of the major experimental and theoretical tools that have been developed are now converging to produce a qualitative change in the program's approach to scientific discovery. The U.S. program has traditionally been an important source of innovation and discovery for the international fusion energy effort. The goal of understanding at a fundamental level the physical processes governing observed plasma behavior has been a distinguishing feature of the program.

Book Lecture Series on Turbulent Transport in Tokamaks

Download or read book Lecture Series on Turbulent Transport in Tokamaks written by Ronald E. Waltz and published by . This book was released on 1987 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Transport Modeling in the Edge Plasma of Tokamaks

Download or read book Turbulent Transport Modeling in the Edge Plasma of Tokamaks written by Clothilde Colin and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1984
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1984 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Transport in Rotating Tokamak Plasmas

Download or read book Turbulent Transport in Rotating Tokamak Plasmas written by Francis James Casson and published by . This book was released on 2011 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understand and Predict the Power Threshold Leading to Reduced Turbulent Transport at the Edge of Tokamak Plasma

Download or read book Understand and Predict the Power Threshold Leading to Reduced Turbulent Transport at the Edge of Tokamak Plasma written by Gregory De Dominici and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A model based on a model which natively contained turbulence and turbulence driven flow. It has been improved to include the diamagnetic effects, the magnetic fluctuations, and in this work, we study the parametric dependencies of the observed L-H transition power threshold with respect to the ion mass. By including the diamagnetic effects in our model, we allow the competition between the drift waves and the interchange instabilities. This competition is here studied using fixed gradient simulation. We show in this work that the diamagnetic effects are stabilizing for a resistivity close to experimental conditions. Electromagnetic effects lead to more unstable modes at realistic resistivities. Moreover, a quasilinear estimation of the turbulent flux is able to qualitatively grasp the competition between the drift waves and the interchange and the behaviour of the nonlinear electrostatic turbulent flux with resistivity and plasma beta. Another parametric dependency of the turbulence is studied, by changing the mass of the isotope. This is known as the isotope effect. We show here that the turbulence is reduced when the ion mass is increased. Finally, the characteristic times of the turbulence are studied.Magnetic fluctuations have a dramatic effect on correlation times of the turbulence, by drastically reducing them. Accounting for these results, we present in this work the auto-generation of a transport barrier with electromagnetic simulations of edge turbulence, when the heat power is higher than a threshold, using flux-driven simulations. We have then changed the isotope, and correspondingly to experiments, the power threshold is lower for higher isotope mass.

Book Turbulence and Transport Studies with Phase Contrast Imaging in the Alcator C Mod Tokamak and Comparisons with Gyrokinetic Simulations

Download or read book Turbulence and Transport Studies with Phase Contrast Imaging in the Alcator C Mod Tokamak and Comparisons with Gyrokinetic Simulations written by Liang Lin (Ph. D.) and published by . This book was released on 2009 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Our study shows that although the short wavelength turbulence in the ETG range is unstable in the linear ohmic regime, the nonlinear simulation with k[theta][rho]s up to 4 does not raise the electron thermal diffusivity to the experimental level, where k[theta] is the poloidal wavenumber and [rho]s is the ion-sound Larmor radius. The H-Mode studies focus on plasmas before and during internal transport barrier formation in an enhanced D[alpha], H-Mode plasma. The simulated fluctuations from GYRO agree with experimental measurements in the ITG regime. GYRO also shows good agreement in transport predictions with experimental measurements after reducing the ion temperature gradient (~15%) and adding ExB shear suppression, all within the experimental uncertainty.