EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Modelling Of Flow Through Porous Media   Proceedings Of The Conference

Download or read book Mathematical Modelling Of Flow Through Porous Media Proceedings Of The Conference written by Alain P Bourgeat and published by World Scientific. This book was released on 1995-11-30 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.

Book Numerical Simulation of Flow Through Porous Media  microform

Download or read book Numerical Simulation of Flow Through Porous Media microform written by Mohammad Hafiz Hamdan and published by National Library of Canada. This book was released on 1989 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Analysis of Heat and Mass Transfer in Porous Media

Download or read book Numerical Analysis of Heat and Mass Transfer in Porous Media written by J.M.P.Q. Delgado and published by Springer Science & Business Media. This book was released on 2012-06-25 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of ‘Numerical Analysis of Heat and Mass Transfer in Porous Media’ is to provide a collection of recent contributions in the field of computational heat and mass transfer in porous media. The main benefit of the book is that it discusses the majority of the topics related to numerical transport phenomenon in engineering (including state-of-the-art and applications) and presents some of the most important theoretical and computational developments in porous media and transport phenomenon domain, providing a self-contained major reference that is appealing to both the scientists, researchers and the engineers. At the same time, these topics encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

Book Numerical Simulation of Fluid   Mineral Interaction and Reactive Transport in Porous and Fractured Media

Download or read book Numerical Simulation of Fluid Mineral Interaction and Reactive Transport in Porous and Fractured Media written by Mehrdad Yousefzadeh Eshkoori and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media, ubiquitous to a number of environmental and engineering systems, exhibit heterogeneity on a continuity of scales. This, combined with nonlinear processes, complex topology and coupling between different physical processes (e.g. reaction, hydrodynamics and geometry evolution), significantly complicates numerical modeling efforts where a balance between computational efficiency and accuracy has to be stricken. While effective medium theories represent computationally convenient alternatives to pore-scale models, the true macroscopic behavior of the system often significantly deviates from mean field approximations: this is due to (i) strong coupling between processes occurring at different scales and (ii) localized invalidation of the macroscale approximation. Moreover, accurate modeling of flow and reactive transport at the pore-scale calls for high-fidelity numerical methods that have a high order of accuracy, are capable of handling complex geometry and physics of the porous media problems and require less computational resources. The reactive transport problem in porous media, typically involves moving boundaries (i.e. solid-fluid interfaces), which multiply the numerical challenges. Different mathematical and modeling approaches have been developed to describe, understand and predict the system behavior at different scales, ranging from the pore to the system-scale, although handling across-scale coupling in reactive porous media systems with evolving geometries still tests the limits of current computational models. In this study, we focus on the development of novel computational tools to model reactive transport in porous media, where lack of scale separation occurs and/or where reactions may alter pore-scale topology. Such models are able to handle (i) lack of scale separation, and (ii) the geometric evolution of the pore-structure due to localized reactions within an Immersed Boundary Method (IBM) framework, while retaining model predictivity and containing the computational costs, respectively. To this end, we developed a hybrid (multi-scale) model for reactive transport in porous and fractured media that employs finer scales (pore-scale models), whenever the macroscopic models break down, and uses the computationally cheaper Darcy-scale models when their fundamental assumptions are valid. Its accuracy and capabilities have been tested for several transport scenarios. To address the challenge of numerical implementation of governing equations within the complex geometries, a high-order Immersed Boundary Method is built that is able to handle various boundary conditions relevant to mass transport in reactive systems. We have extended this IBM for moving interface problems by developing a level-set IBM (LSIBM) that can track the interface separating fluid and solid accurately. This fully Cartesian grid based method is used to investigate the dissolution and precipitation of chemical species in fractures, and the role of surface roughness in altering the reaction rates is studied.

Book A Systems Description of Flow Through Porous Media

Download or read book A Systems Description of Flow Through Porous Media written by Jan Dirk Jansen and published by Springer Science & Business Media. This book was released on 2013-05-23 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text forms part of material taught during a course in advanced reservoir simulation at Delft University of Technology over the past 10 years. The contents have also been presented at various short courses for industrial and academic researchers interested in background knowledge needed to perform research in the area of closed-loop reservoir management, also known as smart fields, related to e.g. model-based production optimization, data assimilation (or history matching), model reduction, or upscaling techniques. Each of these topics has connections to system-theoretical concepts. The introductory part of the course, i.e. the systems description of flow through porous media, forms the topic of this brief monograph. The main objective is to present the classic reservoir simulation equations in a notation that facilitates the use of concepts from the systems-and-control literature. Although the theory is limited to the relatively simple situation of horizontal two-phase (oil-water) flow, it covers several typical aspects of porous-media flow. The first chapter gives a brief review of the basic equations to represent single-phase and two-phase flow. It discusses the governing partial-differential equations, their physical interpretation, spatial discretization with finite differences, and the treatment of wells. It contains well-known theory and is primarily meant to form a basis for the next chapter where the equations will be reformulated in terms of systems-and-control notation. The second chapter develops representations in state-space notation of the porous-media flow equations. The systematic use of matrix partitioning to describe the different types of inputs leads to a description in terms of nonlinear ordinary-differential and algebraic equations with (state-dependent) system, input, output and direct-throughput matrices. Other topics include generalized state-space representations, linearization, elimination of prescribed pressures, the tracing of stream lines, lift tables, computational aspects, and the derivation of an energy balance for porous-media flow. The third chapter first treats the analytical solution of linear systems of ordinary differential equations for single-phase flow. Next it moves on to the numerical solution of the two-phase flow equations, covering various aspects like implicit, explicit or mixed (IMPES) time discretizations and associated stability issues, Newton-Raphson iteration, streamline simulation, automatic time-stepping, and other computational aspects. The chapter concludes with simple numerical examples to illustrate these and other aspects such as mobility effects, well-constraint switching, time-stepping statistics, and system-energy accounting. The contents of this brief should be of value to students and researchers interested in the application of systems-and-control concepts to oil and gas reservoir simulation and other applications of subsurface flow simulation such as CO2 storage, geothermal energy, or groundwater remediation.

Book Mathematical Modelling of Flow Through Porous Media

Download or read book Mathematical Modelling of Flow Through Porous Media written by Alain P. Bourgeat and published by World Scientific Publishing Company Incorporated. This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.

Book The Mathematics of Fluid Flow Through Porous Media

Download or read book The Mathematics of Fluid Flow Through Porous Media written by Myron B. Allen, III and published by John Wiley & Sons. This book was released on 2021-06-08 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the techniques necessary to build and use computational models of porous media fluid flow In The Mathematics of Fluid Flow Through Porous Media, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, The Mathematics of Fluid Flow Through Porous Media is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, The Mathematics of Fluid Flow Through Porous Media also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.

Book Development of an Immersed Boundary Method for the Simulation of Moving Bodies at Fluid fluid Interfaces

Download or read book Development of an Immersed Boundary Method for the Simulation of Moving Bodies at Fluid fluid Interfaces written by Adam Robert O'Brien and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particles interacting with interfaces in multiphase flows appear in many scenarios of industrial interest, including bitumen extraction, mineral recovery via froth flotation, soil remediation, and many others. This thesis presents the development of Immersed Boundary Methods (IBMs) coupled to a two-phase incompressible flow solver. The phases are treated as immiscible, and are modelled using the Volume-of-Fluid (VOF) method. The methods developed to include the effects of surface tension and contact lines are presented. A detailed description of the numerical methods, as well as their implementation into a new software framework, are presented. Details regarding the solution of the resulting large systems of sparse equations in parallel are briefly described. The accuracy of the proposed models are demonstrated in three chapters; test cases range from validation of the correct contact angle for droplets sitting on curved surfaces, to more complex Fluid-Structure Interaction (FSI) problems involving moving objects at fluid-fluid interfaces. Stationary IBMs were coupled with a VOF multiphase solver, with the effects of surface tension included via the Continuum Surface Force (CSF) method. The domain was separated into fluid and solid regions, with coupling between them achieved through a ghost-cell interpolation procedure, which in effect prescribed the desired boundary conditions for the velocity and pressure fields. A new method was developed to include the effects of contact angle/wetting for moving boundary problems. For these problems, a unified momentum equation for both the fluid and solid phases was solved, and the effect of the boundary was introduced into the momentum equation via a body force term. Solutions to FSI problems involving strong capillary forces are presented and compared to experiments. Finally, an application of the proposed numerical methods to simulating porous media injection is shown. The algorithm's ability to predict an interface's transition between stable displacement, viscous fingering and capillary fingering is demonstrated.

Book Particulate Flows

    Book Details:
  • Author : Donald A. Drew
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1468471090
  • Pages : 155 pages

Download or read book Particulate Flows written by Donald A. Drew and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PARTICULATE FLOWS: PROCESSING AND RHEOLOGY is based on the proceedings of a very successful one-week workshop with the same title, which was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Donald A. Drew, Daniel D. Joseph, and Stephen L. Passman for their excellent work as organizers of the meeting. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE The workshop on Particulate Flows: Processing and Rheology was held January 8-12, 1996 at the Institute for Mathematics and its Applications on the University of Minnesota Twin Cities campus as part of the 1995- 96 Program on Mathematical Methods in Materials Science. There were about forty participants, and some lively discussions, in spite of the fact that bad weather on the east coast kept some participants from attending, and caused scheduling changes throughout the workshop. Heterogeneous materials can behave strangely, even in simple flow sit uations. For example, a mixture of solid particles in a liquid can exhibit behavior that seems solid-like or fluid-like, and attempting to measure the "viscosity" of such a mixture leads to contradictions and "unrepeatable" experiments. Even so, such materials are commonly used in manufacturing and processing.

Book The Numerical Simulation of Flow Over a Porous Media

Download or read book The Numerical Simulation of Flow Over a Porous Media written by T. M. van Kalken and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of Miscible Fluid Flows in Porous Media

Download or read book Numerical Simulation of Miscible Fluid Flows in Porous Media written by Mohammad Jalal Ahammad and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of miscible ow in porous media is an important topic in many disciplines of science and engineering, especially in the field of petroleum engineering. For example, Carbon dioxide (CO2) may be injected into an oil reservoir in order to improve the oil recovery rates, which is called enhanced oil recovery (EOR). This thesis focuses on the study of a miscible displacement of two fluids, such as CO2 and oil, in a porous medium. An upscaling methodology for modeling multiscale features of the ow and the porous medium has been studied, where the overall pressure drag and skin friction exerted on the porous medium has been modelled by combining the Darcy's law with a statistical mechanical theory of viscosity, which is an important contribution of this thesis. A numerical methodology for capturing the multiphysics and multiscale nature of the governing motion has been studied. The temporal discretization employs the second order Crank-Nicolson scheme for viscous and diffusive phenomena, and an explicit method for all other terms. The nonlinear advection terms in the momentum equation has been treated with an Euler explicit flux form central finite difference method; however, the advection of the CO2 mass flux has been treated with a streamline based Lagrangian method. In order to implement the Marker-and-Cell (MAC) scheme for resolving the incompressibility, a staggered arrangement of the velocity and pressure has been presented on a collocated grid. This approach enhances the implementation of a multigrid solver, and is a novel computational model for simulating miscible displacement processes. The performance of the Lagrangian method has been assessed with respect to an equivalent flux form upwind method. The results indicate that the viscous forces play a signicant role compared to the effect of permeability on miscible displacement of CO2 and oil, where the injected CO2 displaces the residual oil without being distorted, thereby enhancing the recovery of hydrocarbon. Although the present results with an idealized model lacks from verifications with field measurements, findings of this thesis provide useful feedback to further investigations on CO2 based EOR techniques.

Book Fractured Porous Media

    Book Details:
  • Author : Pierre M. Adler
  • Publisher : Oxford University Press, USA
  • Release : 2013
  • ISBN : 0199666512
  • Pages : 184 pages

Download or read book Fractured Porous Media written by Pierre M. Adler and published by Oxford University Press, USA. This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Book Multiphase Flow in Porous Media

    Book Details:
  • Author : Farad Kamyabi
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2014-10-09
  • ISBN : 9783659615061
  • Pages : 92 pages

Download or read book Multiphase Flow in Porous Media written by Farad Kamyabi and published by LAP Lambert Academic Publishing. This book was released on 2014-10-09 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the hydrocarbon reservoirs that are normally saturated with two or more fluids, in order for better description of the flowing fluids behaviors and rock-fluid interaction, the concept of relative permeability and capillary pressure should be exploited. Brilliant by Petrell AS is an object-oriented (C++) multi-physics Computational Fluid Dynamics (CFD) package developed for simulation of flow. In the continuous process of improving the system, the aim of this work is to model the multiphase flow through porous media using Darcy's equation. The models in the developed code are based on the conservation equation for each mass to obtain the pressure and saturation fields. After the code is benchmarked against the results from Eclipse for the simulation of single-phase flow, another phase is added to the porous flow part of the code to perform the simulation of multiphase flow through porous media. In this process, first the transmissibilities in the already implemented FVM code have been corrected. Then capillary pressure equations and different relative permeability models have been added to the code.

Book Modeling Flow Regimes in Porous Media

Download or read book Modeling Flow Regimes in Porous Media written by Rasoul Arabjamaloei and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this research, single phase flow regimes in porous media were studied both numerically and experimentally to determine methods to predict the effects of rarefied gas flow and inertial flow. The results of this research were initially compared with the convention methods of treating rarefied gas flow, the Klinkenberg equation and inertial flow, the Forchheimer equation. In the first section of the research, the slip condition for rarefied gas flow in low permeability, two-dimensional simple porous media was studied by the Lattice Boltzmann method (LBM) and new corrections to the Klinkenberg model and higher order slip models were investigated. To apply LBM, new corrections were introduced to the solid-fluid boundary condition and a new relationship was proposed to relate LBM viscosity and Knudsen number. To validate the LBM model, the slip flow simulation results were compared to analytical methods and experimentation. It was shown that the modified LBM simulator was capable of predicting the experimentally observed Knudsen minimum. By comparing the numerical simulation results with analytical models extracted from the up-to-date literature, the analytical model that most closely matched numerical model results was identified. In the second section of this research, the apparent permeability reduction due to inertial effects in simple and complex porous structures was studied. LBM based simulator was developed to model single-phase three-dimensional fluid flow in porous media. The simulator was verified by experimental and analytical solution tests and then was implemented to study high Reynolds number flow processes in irregular shaped porous structures. The effects of inertial on the onset and extent of non-Darcy flow in different geometries was studied. It was shown that the Forchheimer equation does not accurately fit the high Reynolds number flow. A new empirical correlation was proposed that correlates the scaled permeability and mass flow rate relationship very well and is more accurate than the Forchheimer equation. To validate the LBM, a modified experimental technique was designed and utilized to analyze permeability and mass flow rate relationships in high Reynolds number flows. The experimental results showed that the correlation in the present research is far more accurate than the Forchheimer equation.