EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Guide to Numerical Modelling in Systems Biology

Download or read book A Guide to Numerical Modelling in Systems Biology written by Peter Deuflhard and published by Springer. This book was released on 2015-07-06 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.

Book Introduction to Numerical Geodynamic Modelling

Download or read book Introduction to Numerical Geodynamic Modelling written by Taras Gerya and published by Cambridge University Press. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.

Book Numerical Models for Differential Problems

Download or read book Numerical Models for Differential Problems written by Alfio Quarteroni and published by Springer Science & Business. This book was released on 2014-04-25 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.

Book Numerical Modelling of Wave Energy Converters

Download or read book Numerical Modelling of Wave Energy Converters written by Matt Folley and published by Academic Press. This book was released on 2016-06-14 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique’s limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements Includes practical examples and simulations available for download at the book’s companion website Identifies key points of each modelling technique without getting deeply involved in the mathematical representation

Book Numerical Modelling of Failure in Advanced Composite Materials

Download or read book Numerical Modelling of Failure in Advanced Composite Materials written by Pedro P. Camanho and published by Woodhead Publishing. This book was released on 2015-08-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials Reviews advanced numerical algorithms for modeling and simulation of failure Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials

Book Innovative Numerical Modelling in Geomechanics

Download or read book Innovative Numerical Modelling in Geomechanics written by Luis Ribeiro e Sousa and published by CRC Press. This book was released on 2012-05-03 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 1990s five books onApplications of Computational Mechanics in Geotechnical Engineering have been published. Innovative Numerical Modelling in Geomechanics is the 6th and final book in this series, and contains papers written by leading experts on computational mechanics. The book treats highly relevant topics in the field of geotechnic

Book Advanced Numerical Modelling of Wave Structure Interaction

Download or read book Advanced Numerical Modelling of Wave Structure Interaction written by David M Kelly and published by CRC Press. This book was released on 2021-04-06 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will serve as a reference guide, and state-of-the-art review, for the wide spectrum of numerical models and computational techniques available to solve some of the most challenging problems in coastal engineering. The topics covered in this book, are explained fundamentally from a numerical perspective and also include practical examples applications. Important classic themes such as wave generation, propagation and breaking, turbulence modelling and sediment transport are complemented by hot topics such as fluid and structure interaction or multi-body interaction to provide an integral overview on numerical techniques for coastal engineering. Through the vision of 10 high impact authors, each an expert in one or more of the fields included in this work, the chapters offer a broad perspective providing several different approaches, which the readers can compare critically to select the most suitable for their needs. Advanced Numerical Modelling of Wave Structure Interaction will be useful for a wide audience, including PhD students, research scientists, numerical model developers and coastal engineering consultants alike.

Book Numerical Modelling and Design of Electrical Machines and Devices

Download or read book Numerical Modelling and Design of Electrical Machines and Devices written by Kay Hameyer and published by WIT Press. This book was released on 1999-05-21 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an overview of numerical field computational methods and, in particular, of the finite element method (FEM) in magnetics. Detailed attention is paid to the practical use of the FEM in designing electromagnetic devices such as motors, transformers and actuators. Based on the authors' extensive experience of teaching numerical techniques to students and design engineers, the book is ideal for use as a text at undergraduate and graduate level, or as a primer for practising engineers who wish to learn the fundamentals and immediately apply these to actual design problems. Contents: Introduction; Computer Aided Design in Magnetics; Electromagnetic Fields; Potentials and Formulations; Field Computation and Numerical Techniques; Coupled Field Problems; Numerical Optimisation; Linear System Equation Solvers; Modelling of Electrostatic and Magnetic Devices; Examples of Computed Models.

Book Numerical Modelling of Material Deformation Processes

Download or read book Numerical Modelling of Material Deformation Processes written by Peter Hartley and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.

Book Numerical Modelling Bulk Superconducto

Download or read book Numerical Modelling Bulk Superconducto written by Mark Ainslie and published by Iph001. This book was released on 2019-11-13 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the book is to provide a comprehensive overview of all the numerical modelling considerations required to model the magnetization of bulk superconductors, with practical examples.

Book Numerical Techniques for Global Atmospheric Models

Download or read book Numerical Techniques for Global Atmospheric Models written by Peter H. Lauritzen and published by Springer Science & Business Media. This book was released on 2011-03-29 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.

Book Numerical Modeling of Concrete Cracking

Download or read book Numerical Modeling of Concrete Cracking written by Guenter Hofstetter and published by Springer Science & Business Media. This book was released on 2011-10-08 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the underlying theories of the different approaches for modeling cracking of concrete and provides a critical survey of the state-of-the-art in computational concrete mechanics. It covers a broad spectrum of topics related to modeling of cracks, including continuum-based and discrete crack models, meso-scale models, advanced discretization strategies to capture evolving cracks based on the concept of finite elements with embedded discontinuities and on the extended finite element method, and extensions to coupled problems such a hygro-mechanical problems as required in computational durability analyses of concrete structures.

Book Numerical Methods and Modelling for Engineering

Download or read book Numerical Methods and Modelling for Engineering written by Richard Khoury and published by Springer. This book was released on 2016-05-11 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems.

Book Numerical Modeling of Masonry and Historical Structures

Download or read book Numerical Modeling of Masonry and Historical Structures written by Bahman Ghiassi and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 890 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures Follows a theory to practice approach

Book Numerical Modelling

    Book Details:
  • Author : Peep Miidla
  • Publisher : BoD – Books on Demand
  • Release : 2012-03-23
  • ISBN : 9535102192
  • Pages : 422 pages

Download or read book Numerical Modelling written by Peep Miidla and published by BoD – Books on Demand. This book was released on 2012-03-23 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates applications and case studies performed by experts for professionals and students in the field of technology, engineering, materials, decision making management and other industries in which mathematical modelling plays a role. Each chapter discusses an example and these are ranging from well-known standards to novelty applications. Models are developed and analysed in details, authors carefully consider the procedure for constructing a mathematical replacement of phenomenon under consideration. For most of the cases this leads to the partial differential equations, for the solution of which numerical methods are necessary to use. The term Model is mainly understood as an ensemble of equations which describe the variables and interrelations of a physical system or process. Developments in computer technology and related software have provided numerous tools of increasing power for specialists in mathematical modelling. One finds a variety of these used to obtain the numerical results of the book.

Book Numerical Modelling and Simulation of Metal Processing

Download or read book Numerical Modelling and Simulation of Metal Processing written by Christof Sommitsch and published by MDPI. This book was released on 2021-08-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.

Book Numerical Methods for Nonlinear Engineering Models

Download or read book Numerical Methods for Nonlinear Engineering Models written by John R. Hauser and published by Springer Science & Business Media. This book was released on 2009-03-24 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.