Download or read book Numerical Techniques for Global Atmospheric Models written by Peter H. Lauritzen and published by Springer Science & Business Media. This book was released on 2011-03-29 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.
Download or read book Physical Processes in Clouds and Cloud Modeling written by Alexander P. Khain and published by Cambridge University Press. This book was released on 2018-07-05 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive analysis of modern theories of cloud microphysical processes and their representation in numerical cloud models.
Download or read book Numerical Methods in Weather Prediction written by G Marchuk and published by Elsevier. This book was released on 2012-12-02 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Weather Prediction focuses on the numerical methods for solving problems of weather prediction and explains the aspect of the general circulation of the atmosphere. This book explores the development in the science of meteorology, which provides investigators with improved means of studying physical processes by mathematical stimulation. Organized into eight chapters, this book starts with an overview of the significant physical factors that are instrumental in enriching the theoretical models of weather prediction. This text then examines the system of hydrodynamic equations and the equation of heat transfer related to large-scale atmospheric processes. Other chapters consider the quasigeostrophic approximation model, which is the basis for concepts of the dynamics of atmospheric motions and instrumental in establishing the basic features and laws of evolution of meteorological variables as applied to large-scale processes. The final chapter deals with the adjustment of the humidity field. This book is a valuable resource for meteorologists.
Download or read book Modeling of Atmospheric Chemistry written by Guy P. Brasseur and published by Cambridge University Press. This book was released on 2017-06-19 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Download or read book Atmospheric Modeling Data Assimilation and Predictability written by Eugenia Kalnay and published by Cambridge University Press. This book was released on 2003 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.
Download or read book Atmospheres and Oceans on Computers written by Lars Petter Røed and published by Springer. This book was released on 2018-09-04 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces step by step the basic numerical methods to solve the equations governing the motion of the atmosphere and ocean, and describes how to develop a set of corresponding instructions for the computer as part of a code. Today's computers are powerful enough to allow 7-day forecasts within hours, and modern teaching of the subject requires a combination of theoretical and computational approaches. The presentation is aimed at beginning graduate students intending to become forecasters or researchers, that is, users of existing models or model developers. However, model developers must be well versed in the underlying physics as well as in numerical methods. Thus, while some of the topics discussed in the modeling of the atmosphere and ocean are more advanced, the book ensures that the gap between those scientists who analyze results from model simulations and observations and those who work with the inner works of the model does not widen further. In this spirit, the course presents methods whereby important balance equations in oceanography and meteorology, namely the advection-diffusion equation and the shallow water equations on a rotating Earth, can be solved by numerical means with little prior knowledge. The numerical focus is on the finite-difference (FD) methods, and although more powerful methods exist, the simplicity of FD makes it ideal as a pedagogical introduction to the subject. The book also includes suitable exercises and computer problems.
Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
Download or read book Fundamentals of Ocean Climate Models written by Stephen Griffies and published by Princeton University Press. This book was released on 2018-06-05 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sets forth the physical, mathematical, and numerical foundations of computer models used to understand and predict the global ocean climate system. Aimed at students and researchers of ocean and climate science who seek to understand the physical content of ocean model equations and numerical methods for their solution, it is largely general in formulation and employs modern mathematical techniques. It also highlights certain areas of cutting-edge research. Stephen Griffies presents material that spans a broad spectrum of issues critical for modern ocean climate models. Topics are organized into parts consisting of related chapters, with each part largely self-contained. Early chapters focus on the basic equations arising from classical mechanics and thermodynamics used to rationalize ocean fluid dynamics. These equations are then cast into a form appropriate for numerical models of finite grid resolution. Basic discretization methods are described for commonly used classes of ocean climate models. The book proceeds to focus on the parameterization of phenomena occurring at scales unresolved by the ocean model, which represents a large part of modern oceanographic research. The final part provides a tutorial on the tensor methods that are used throughout the book, in a general and elegant fashion, to formulate the equations.
Download or read book Numerical Methods for Wave Equations in Geophysical Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.
Download or read book Parameterization Schemes written by David J. Stensrud and published by Cambridge University Press. This book was released on 2007-05-03 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: 1.
Download or read book Numerical Weather and Climate Prediction written by Thomas Tomkins Warner and published by Cambridge University Press. This book was released on 2010-12-02 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
Download or read book Numerical Weather and Climate Prediction written by Thomas Tomkins Warner and published by Cambridge University Press. This book was released on 2010-12-02 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
Download or read book Fundamentals of Atmospheric Modeling written by Mark Z. Jacobson and published by Cambridge University Press. This book was released on 2005-05-05 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Fundamentals of Numerical Weather Prediction written by Jean Coiffier and published by Cambridge University Press. This book was released on 2011-12-01 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.
Download or read book Numerical Regularization for Atmospheric Inverse Problems written by Adrian Doicu and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.
Download or read book Weather Prediction by Numerical Process written by Lewis F. Richardson and published by . This book was released on 1922 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A First Course in Atmospheric Numerical Modeling written by Alex Joseph DeCaria and published by . This book was released on 2014-05-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for advanced undergraduates and graduates in atmospheric science. It introduces students to the essentials of finite-difference methods, numerical stability, spectral methods, data assimilation and initialization, boundary conditions, and parameterization of subgrid-scale phenomenon. It also covers more advanced topics such as finite-volume methods, semi-Lagrangian and semi-implicit schemes, and chemical transport modeling. Practical programming and written exercises are included.