EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Large Eigenvalue Problems

Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Book Numerical Methods for Eigenvalue Problems

Download or read book Numerical Methods for Eigenvalue Problems written by Steffen Börm and published by Walter de Gruyter. This book was released on 2012-05-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenvalues and eigenvectors of matrices and linear operators play an important role when solving problems from structural mechanics and electrodynamics, e.g., by describing the resonance frequencies of systems, when investigating the long-term behavior of stochastic processes, e.g., by describing invariant probability measures, and as a tool for solving more general mathematical problems, e.g., by diagonalizing ordinary differential equations or systems from control theory. This textbook presents a number of the most important numerical methods for finding eigenvalues and eigenvectors of matrices. The authors discuss the central ideas underlying the different algorithms and introduce the theoretical concepts required to analyze their behavior with the goal to present an easily accessible introduction to the field, including rigorous proofs of all important results, but not a complete overview of the vast body of research. Several programming examples allow the reader to experience the behavior of the different algorithms first-hand. The book addresses students and lecturers of mathematics, physics and engineering who are interested in the fundamental ideas of modern numerical methods and want to learn how to apply and extend these ideas to solve new problems.

Book Numerical Methods for General and Structured Eigenvalue Problems

Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Book Finite Element Methods for Eigenvalue Problems

Download or read book Finite Element Methods for Eigenvalue Problems written by Jiguang Sun and published by CRC Press. This book was released on 2016-08-19 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.

Book Eigenvalue Problems in Power Systems

Download or read book Eigenvalue Problems in Power Systems written by Federico Milano and published by CRC Press. This book was released on 2020-12-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive taxonomy of non-symmetrical eigenvalues problems as applied to power systems. The book bases all formulations on mathematical concept of “matrix pencils” (MPs) and considers both regular and singular MPs for the eigenvalue problems. Each eigenvalue problem is illustrated with a variety of examples based on electrical circuits and/or power system models and controllers and related data are provided in the appendices of the book. Numerical methods for the solution of all considered eigenvalue problems are discussed. The focus is on large scale problems and, hence, attention is dedicated to the performance and scalability of the methods. The target of the book are researchers and graduated students in Electrical & Computer Science Engineering, both taught and research Master programmes as well as PhD programmes and it: explains eigenvalue problems applied into electrical power systems explains numerical examples on applying the mathematical methods, into studying small signal stability problems of realistic and large electrical power systems includes detailed and in-depth analysis including non-linear and other advanced aspects provides theoretical understanding and advanced numerical techniques essential for secure operation of power systems provides a comprehensive set of illustrative examples that support theoretical discussions

Book Templates for the Solution of Algebraic Eigenvalue Problems

Download or read book Templates for the Solution of Algebraic Eigenvalue Problems written by Zhaojun Bai and published by SIAM. This book was released on 2000-01-01 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.

Book Inverse Eigenvalue Problems

Download or read book Inverse Eigenvalue Problems written by Moody Chu and published by Oxford University Press. This book was released on 2005-06-16 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.

Book High Precision Methods in Eigenvalue Problems and Their Applications

Download or read book High Precision Methods in Eigenvalue Problems and Their Applications written by Leonid D. Akulenko and published by CRC Press. This book was released on 2004-10-15 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of analytical, asymptotic, numerical, and combined methods of solving eigenvalue problems. It considers the new method of accelerated convergence for solving problems of the Sturm-Liouville type as well as boundary-value problems with boundary conditions of the first, second, and third kind. The authors also present high

Book Numerical Methods in Matrix Computations

Download or read book Numerical Methods in Matrix Computations written by Åke Björck and published by Springer. This book was released on 2014-10-07 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.

Book Large Scale Eigenvalue Problems

Download or read book Large Scale Eigenvalue Problems written by J. Cullum and published by Elsevier. This book was released on 1986-01-01 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories:novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.

Book The Matrix Eigenvalue Problem

Download or read book The Matrix Eigenvalue Problem written by David S. Watkins and published by SIAM. This book was released on 2007-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.

Book Numerical Algorithms

    Book Details:
  • Author : Justin Solomon
  • Publisher : CRC Press
  • Release : 2015-06-24
  • ISBN : 1482251892
  • Pages : 400 pages

Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Book Partial Differential Equations with Numerical Methods

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Book Applied Numerical Linear Algebra

Download or read book Applied Numerical Linear Algebra written by James W. Demmel and published by SIAM. This book was released on 1997-08-01 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Book Iterative Methods for Sparse Linear Systems

Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.

Book A First Course in Numerical Methods

Download or read book A First Course in Numerical Methods written by Uri M. Ascher and published by SIAM. This book was released on 2011-07-14 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers students a practical knowledge of modern techniques in scientific computing.

Book Numerical Linear Algebra with Applications

Download or read book Numerical Linear Algebra with Applications written by William Ford and published by Academic Press. This book was released on 2014-09-14 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. - Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra - Detailed explanations and examples - A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra - Examples from engineering and science applications