Download or read book The Lattice Boltzmann Equation written by S. Succi and published by Oxford University Press. This book was released on 2001-06-28 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Download or read book Lattice Boltzmann Method written by Abdulmajeed A. Mohamad and published by . This book was released on 2019 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Download or read book Lattice Boltzmann Modeling written by Michael C. Sukop and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Download or read book Lattice Boltzmann Method And Its Application In Engineering written by Zhaoli Guo and published by World Scientific. This book was released on 2013-03-25 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Download or read book Convection in Porous Media written by D.A. Nield and published by Springer Science & Business Media. This book was released on 2006-12-06 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition includes nearly 1000 new references.
Download or read book Convective Heat Transfer in Porous Media written by Yasser Mahmoudi and published by CRC Press. This book was released on 2019-11-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.
Download or read book Tortuosity and Microstructure Effects in Porous Media written by Lorenz Holzer and published by Springer Nature. This book was released on 2023-07-31 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents a thorough look at tortuosity and microstructure effects in porous materials. The book delivers a comprehensive review of the subject, summarizing all key results in the field with respect to the underlying theories, empirical data available in the literature, modern methodologies and calculation approaches, and quantitative relationships between microscopic and macroscopic properties. It thoroughly discusses up to 20 different types of tortuosity and introduces a new classification scheme and nomenclature based on direct geometric tortuosities, indirect physics-based tortuosities, and mixed tortuosities (geometric and physics-based). The book also covers recent progress in 3D imaging and image modeling for studying novel aspects of tortuosity and associated transport properties in materials, while providing a comprehensive list of available software packages for practitioners in the community. This book is a must-read for researchers and students in materials science and engineering interested in a deeper understanding of microstructure–property relationships in porous materials. For energy materials in particular, such as lithium-ion batteries, tortuosity is a key microstructural parameter that can greatly impact long-term material performance. Thus, the information laid out in this book will also greatly benefit researchers interested in computational modeling and design of next-generation materials, especially those for sustainability and energy applications.
Download or read book Lattice Boltzmann Modeling of Complex Flows for Engineering Applications written by Andrea Montessori and published by Morgan & Claypool Publishers. This book was released on 2018-02-20 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Download or read book Convective Heat Transfer in Porous Media written by Yasser Mahmoudi and published by CRC Press. This book was released on 2019-11-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.
Download or read book Modelling of Flow and Transport in Fractal Porous Media written by Jianchao Cai and published by Elsevier. This book was released on 2020-11-05 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures
Download or read book Turbulence in Porous Media written by Marcelo J.S. de Lemos and published by Elsevier. This book was released on 2012-06-25 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence in Porous Media introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media are present in a number of engineering and natural flows. This new edition features a completely updated text including two new chapters exploring Turbulent Combustion and Moving Porous Media. De Lemos has expertly brought together a text that compiles, details, compares and evaluates available methodologies for modelling and simulating flow, providing an essential tour for engineering students working within the field as well as those working in chemistry, physics, applied mathematics, and geological and environmental sciences. Brings together groundbreaking and complex research on turbulence in porous media Extends the original model to situations including reactive systems Now discusses movement of the porous matrix
Download or read book Annual Research Briefs written by Center for Turbulence Research (U.S.) and published by . This book was released on 2007 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Science ICCS 2024 written by Leonardo Franco and published by Springer Nature. This book was released on 2024 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zusammenfassung: The 7-volume set LNCS 14832 - 14838 constitutes the proceedings of the 24th International Conference on Computational Science, ICCS 2024, which took place in Malaga, Spain, during July 2-4, 2024. The 155 full papers and 70 short papers included in these proceedings were carefully reviewed and selected from 430 submissions. They were organized in topical sections as follows: Part I: ICCS 2024 Main Track Full Papers; Part II: ICCS 2024 Main Track Full Papers; Part III: ICCS 2024 Main Track Short Papers; Advances in High-Performance Computational Earth Sciences: Numerical Methods, Frameworks and Applications; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Part IV: Biomedical and Bioinformatics Challenges for Computer Science; Computational Health; Part V: Computational Optimization, Modelling, and Simulation; Generative AI and Large Language Models (LLMs) in Advancing Computational Medicine; Machine Learning and Data Assimilation for Dynamical Systems; Multiscale Modelling and Simulation; Part VI: Network Models and Analysis: From Foundations to Artificial Intelligence; Numerical Algorithms and Computer Arithmetic for Computational Science; Quantum Computing; Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks, and Artificial Intelligence; Solving Problems with Uncertainties; Teaching Computational Science
Download or read book Modern world heat transfer problems Role of nanofluids and fractional order approaches written by Adnan and published by Frontiers Media SA. This book was released on 2023-01-31 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multiphase Lattice Boltzmann Methods written by Haibo Huang and published by John Wiley & Sons. This book was released on 2015-06-11 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the model most suitable for the problems they are interested in. The book is targeted at graduate students and researchers who plan to investigate multiphase flows using LBMs. Throughout the text most of the popular multiphase LBMs are analyzed both theoretically and through numerical simulation. The authors present many of the mathematical derivations of the models in greater detail than is currently found in the existing literature. The approach to understanding and classifying the various models is principally based on simulation compared against analytical and observational results and discovery of undesirable terms in the derived macroscopic equations and sometimes their correction. A repository of FORTRAN codes for multiphase LBM models is also provided.
Download or read book Heat and Mass Transfer in MHD Flows written by Elm?rs Bl?ms and published by World Scientific. This book was released on 1987 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of heat and mass transfer processes by means of external force effects is one of the most important problems in modern applied physics. This book is devoted to the study of the magnetic field effect as it bears on transfer phenomena: heat and mass transfer. In conducting media, this influence is mainly due to the induced electric current and the interaction of the current with the magnetic field, whereas in magnetizable fluids, molecular or colloidal solution, transfer phenomena are directly affected by the field. When analysing heat and mass transfer in multiphase magnetizing media, only those phenomena which could be described in terms of conventional quasi-stationary approximation are considered. The effects assoicated with the non-equilibrium magnetization of the system and particle interaction receive special attention here. The problem studied here have been considered with a view to possible applications, particularly in biology and medicine.