EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nucleation Promotion and Kinetics on Chemical Vapor Deposited Thin Films

Download or read book Nucleation Promotion and Kinetics on Chemical Vapor Deposited Thin Films written by Kai-Ann Yang and published by . This book was released on 1999 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of Vapor Deposition of Thin Films

Download or read book Principles of Vapor Deposition of Thin Films written by Professor K.S. K.S Sree Harsha and published by Elsevier. This book was released on 2005-12-16 with total page 1173 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology. Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible. * Offers detailed derivation of important formulae. * Thoroughly covers the basic principles of materials science that are important to any thin film preparation. * Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.

Book Nucleation and Growth of Thin Films

Download or read book Nucleation and Growth of Thin Films written by Brian Lewis and published by . This book was released on 1978 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Vapor Solid Nucleation  Kinetics of Formation of Epitaxial Thin Films

Download or read book Vapor Solid Nucleation Kinetics of Formation of Epitaxial Thin Films written by R. D. Gretz and published by . This book was released on 1969 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the work was to clarify the interrelationship of competitive processes in the incidence of epitaxy in the vapor deposition system gold on molybdenum. A new contamination effect caused by oil diffusion pumps was discovered that caused an evanescent approach toward the major objective. For this reason a getter pump LEED system was constructed in order that structures formed during vapor deposition could be discerned in a contaminant free system. (Author).

Book Dynamics of Nucleation in Chemical Vapor Deposition

Download or read book Dynamics of Nucleation in Chemical Vapor Deposition written by and published by . This book was released on 1995 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study the evolution of layer morphology during the early stages of metal chemical vapor deposition (CVD) onto Si(100) via pyrolysis of Fe(CO)5 below 250°C. Scanning tunneling microscopy (STM) shows that nuclei formation is limited by precursor dissociation which occurs on terraces, not at step sites. Also, the average size of clusters formed during CVD is larger than for Fe growth by evaporation (a random deposition process). Based on STM data and Monte Carlo simulations, we conclude that the CVD-growth morphology is affected by preferential dissociation of Fe(CO)5 molecules at existing Fe clusters -- an autocatalytic effect. We demonstrate that nucleation kinetics can be used to control formation of metal nanostructures on chemically tailored surfaces. Reactive sites on Si (001) are first passivated by hydrogen. H atoms are locally removed by electron stimulated desorption using electrons emitted from the STM tip. Subsequent pyrolysis of Fe(CO)5 leads to selective nucleation and growth of Fe films in the areas where H has been removed.

Book Modeling of Chemical Vapor Deposition of Tungsten Films

Download or read book Modeling of Chemical Vapor Deposition of Tungsten Films written by Chris R. Kleijn and published by Birkhäuser. This book was released on 2013-11-11 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor equipment modeling has in recent years become a field of great interest, because it offers the potential to support development and optimization of manufacturing equipment and hence reduce the cost and improve the quality of the reactors. This book is the result of two parallel lines of research dealing with the same subject - Modeling of Tungsten CVD processes -, which were per formed independently under very different boundary conditions. On the one side, Chris Kleijn, working in an academic research environment, was able to go deep enough into the subject to laya solid foundation and prove the validity of all the assumptions made in his work. On the other side, Christoph Werner, working in the context of an industrial research lab, was able to closely interact with manufacturing and development engineers in a modern submicron semiconductor processing line. Because of these different approaches, the informal collaboration during the course of the projects proved to be extremely helpful to both sides, even though - or perhaps because - different computer codes, different CVD reactors and also slightly different models were used. In spite of the inconsistencies which might arise from this double approach, we feel that the presentation of both sets of results in one book will be very useful for people working in similar projects.

Book Thin Films by Chemical Vapour Deposition

Download or read book Thin Films by Chemical Vapour Deposition written by C.E. Morosanu and published by Elsevier. This book was released on 2016-06-22 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.

Book Chemical Vapor Deposition of Thin Films for Diffusion Barrier Applications

Download or read book Chemical Vapor Deposition of Thin Films for Diffusion Barrier Applications written by Omar Bchir and published by . This book was released on 2019-05-31 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: PhD Dissertation: MOCVD of WNx Dissertation Discovery Company and University of Florida are dedicated to making scholarly works more discoverable and accessible throughout the world. This dissertation, "Chemical Vapor Deposition of Thin Films for Diffusion Barrier Applications" by Omar James Bchir, was obtained from University of Florida and is being sold with permission from the author. A digital copy of this work may also be found in the university's institutional repository, IR@UF. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation.

Book Thin Film Deposition Employing Supersonic Molecular Beams

Download or read book Thin Film Deposition Employing Supersonic Molecular Beams written by Todd William Schroeder and published by . This book was released on 2004 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Studies of Thin Film Nucleation Kinetics

Download or read book Studies of Thin Film Nucleation Kinetics written by Yung-Woo Lee and published by . This book was released on 1986 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Controlling Nucleation and Growth of Ultra thin Ruthenium Films in Chemical Vapor Deposition

Download or read book Controlling Nucleation and Growth of Ultra thin Ruthenium Films in Chemical Vapor Deposition written by Wen Liao (Ph. D.) and published by . This book was released on 2016 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: As feature sizes in microelectronic devices decrease, ultra-thin (

Book Chemical Vapor Deposition of Thin Films as Organic Resists

Download or read book Chemical Vapor Deposition of Thin Films as Organic Resists written by Yu Mao and published by . This book was released on 2003 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Theoretical and Experimental Study Into the Kinetics of Solution Phase Thin Film Deposition

Download or read book A Theoretical and Experimental Study Into the Kinetics of Solution Phase Thin Film Deposition written by Cyrus Schaaf and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The performance of electronic and optoelectronic devices based on solution-processed organic semiconductor layers is strongly influenced by their mesoscale polycrystalline structure, including domain size and spatial distributions. In solution-processed films prepared by spin casting, solvent-based printing, and related methods, morphology is governed by a combination of interrelated thermodynamic and kinetic factors. Classical models of crystal formation in bulk solution or on bare surfaces in vacuum-deposited films fail to adequately capture these effects; the current theoretical understanding of crystallization in solution-deposited films is generally unable to provide much insight, let alone predictive design guidance for tailoring films with specific structural characteristics for a given set of experimental conditions and chemical properties. In this thesis solution-phase thin film formation has been studied for the purpose of developing and new experimental techniques new models for understanding and predicting mesoscale film structure and crystal morphology. I will describe how nucleation can be modeled, and the predictions tested against experiment, by an approach that enables quantitative prediction of crystal coverage and intercrystalline spacing statistics as a function of processing conditions, using only a small number of experimentally-measureable parameters. To do this, a model is introduced that combines a mean-field rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-dependent critical nucleus size to solve for the quasi-two-dimensional temporally- and spatially-varying monomer concentration and nucleation rate. Excellent agreement is observed with measured nucleation densities and inter-domain radial distribution functions in submonolayer tetracene films. The model leads to the first universal set of predictive design rules for solution-phase thin film growth capable of guiding the selection of experimental conditions for truly engineered morphological control. Accompanying this theoretical work a first of its kind experiment is also reported, in which monomer concentration has been spatially and temporally mapped in real time during the film formation process. Through the use of high resolution dark field fluorescence microscopy employing an internal fluorescent standard and multi-wavelength imaging optics the concentration dependence is visualized throughout all regimes of thin film formation. In situ measurements of local concentration contributes to the development of models which treat the role of variations in monomer concentration on mesoscale film morphology of polycrystalline thin films. This work opens the door to numerous studies enabling further development of models which allow for predictive control of polycrystalline thin films in solution-phase deposition techniques. In addition to nucleation, growth of crystalline films is modeled through a set of numerical and computational methods which provide insight into the main factors influencing crystal growth habit. It is shown that crystal capture rate correlation with physical properties displays a distinct lack of agreement between the spacing and initial sizes of crystals with their relative growth rates. This lack of correlation points to the need for more sophisticated models. Through the use of a mean field numerical calculation of the volumetric growth rate changes in crystal morphology can be attributed to a variable sticking probability which depends on the crystal face. Kinetic Monte Carlo simulations are used to directly probe the physics which explain the deviation from the typical single sticking coefficient capture model. The change in shape at long deposition times further suggests that crystal growth occurs in distinct regimes which dictate the final morphology of the crystals. This work provides an explanation to the change in shape of crystalline material at long deposition times which can be used to develop models to predict final crystal morphology. This thesis is comprised of several parts. In the first chapter the broader context of the work is discussed. In chapter 2, I discuss the scientific background laying the foundation for theoretical models into solution-phase deposition. In the third chapter, I describe the experimental system as well as results from various measurements of fundamental chemical and physical properties needed later. The fourth chapter describes a set of models which I have developed to predict mesoscale film structure to create a set of universal design rules in order to engineer thin films grown in the solution-phase. In chapter 5, I describe a state of the art experimental set up allowing for monomer concentration to be mapped in real time. Finally in the last chapter I describe a set of exploratory models to describe change in crystal morphology during the course of thin film formation. This thesis creates new understanding, which will allow for an increase in production of thin films for applications where strict control over domain size, shape, spacing, and crystallographic orientation.