Download or read book Normal Forms and Stability of Hamiltonian Systems written by Hildeberto E. Cabral and published by Springer Nature. This book was released on 2023-09-12 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the study of Hamiltonian systems, focusing on the stability of autonomous and periodic systems and expanding to topics that are usually not covered by the canonical literature in the field. It emerged from lectures and seminars given at the Federal University of Pernambuco, Brazil, known as one of the leading research centers in the theory of Hamiltonian dynamics. This book starts with a brief review of some results of linear algebra and advanced calculus, followed by the basic theory of Hamiltonian systems. The study of normal forms of Hamiltonian systems is covered by Ch.3, while Chapters 4 and 5 treat the normalization of Hamiltonian matrices. Stability in non-linear and linear systems are topics in Chapters 6 and 7. This work finishes with a study of parametric resonance in Ch. 8. All the background needed is presented, from the Hamiltonian formulation of the laws of motion to the application of the Krein-Gelfand-Lidskii theory of strongly stable systems. With a clear, self-contained exposition, this work is a valuable help to advanced undergraduate and graduate students, and to mathematicians and physicists doing research on this topic.
Download or read book Dynamics and Mission Design Near Libration Points written by Gerard G¢mez and published by World Scientific. This book was released on 2001 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies several problems related to the analysis of planned or possible spacecraft missions. It is divided into four chapters. The first chapter is devoted to the computation of quasiperiodic solutions for the motion of a spacecraft near the equilateral points of the Earth-Moon system. The second chapter gives a complete description of the orbits near the collinear point, L 1, between the Earth and the Sun in the restricted three-body problem (RTBP) model. In the third chapter, methods are developed to compute the nominal orbit and to design and test the control strategy for the qua
Download or read book Dynamical Systems written by George David Birkhoff and published by . This book was released on 1927 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Classical and Celestial Mechanics written by Hildeberto Cabral and published by Princeton University Press. This book was released on 2020-12-08 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a number of lectures given between 1993 and 1999 as part of a special series hosted by the Federal University of Pernambuco, in which internationally established researchers came to Recife, Brazil, to lecture on classical or celestial mechanics. Because of the high quality of the results and the general interest in the lecturers' topics, the editors have assembled nine of the lectures here in order to make them available to mathematicians and students around the world. The material presented includes a good balance of pure and applied research and of complete and incomplete results. Bringing together material that is otherwise quite scattered in the literature and including some important new results, it will serve graduate students and researchers interested in Hamiltonian dynamics and celestial mechanics. The contributors are Dieter Schmidt, Ernesto Pérez-Chavela, Mark Levi, Plácido Táboas and Jack Hale, Jair Koiller et al., Hildeberto Cabral, Florin Diacu, and Alain Albouy. The topics covered include central configurations and relative equilibria for the N-body problem, singularities of the N-body problem, the two-body problem, normal forms of Hamiltonian systems and stability of equilibria, applications to celestial mechanics of Poincaré's compactification, the motion of the moon, geometrical methods in mechanics, momentum maps and geometric phases, holonomy for gyrostats, microswimming, and bifurcation from families of periodic solutions.
Download or read book Normal Forms Melnikov Functions and Bifurcations of Limit Cycles written by Maoan Han and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.
Download or read book Geometric Mechanics and Symmetry written by James Montaldi and published by Cambridge University Press. This book was released on 2005-05-05 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lectures in this 2005 book are intended to bring young researchers to the current frontier of knowledge in geometrical mechanics and dynamical systems.
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Download or read book Perturbation Theory written by Giuseppe Gaeta and published by Springer Nature. This book was released on 2022-12-16 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Download or read book Hamiltonian Systems with Three or More Degrees of Freedom written by Carles Simó and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Download or read book Introduction to Hamiltonian Dynamical Systems and the N Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Download or read book New Advances in Celestial Mechanics and Hamiltonian Systems written by Joaquín Delgado and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the IV International Symposium on Hamiltonian Systems and Celestial Mechanics, HAMSYS-2001 was to join top researchers in the area of Celestial Mechanics, Hamiltonian systems and related topics in order to communicate new results and look forward for join research projects. For PhD students, this meeting offered also the opportunity of personal contact to help themselves in their own research, to call as well and promote the attention of young researchers and graduated students from our scientific community to the above topics, which are nowadays of interest and relevance in Celestial Mechanics and Hamiltonian dynamics. A glance to the achievements in the area in the last century came as a consequence of joint discussions in the workshop sessions, new problems were presented and lines of future research were delineated. Specific discussion topics included: New periodic orbits and choreographies in the n-body problem, singularities in few body problems, central configurations, restricted three body problem, geometrical mechanics, dynamics of charged problems, area preserving maps and Arnold diffusion.
Download or read book Dynamical Systems III written by Vladimir I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes the fundamental principles, problems, and methods of elassical mechanics focussing on its mathematical aspects. The authors have striven to give an exposition stressing the working apparatus of elassical mechanics, rather than its physical foundations or applications. This appara tus is basically contained in Chapters 1, 3,4 and 5. Chapter 1 is devoted to the fundamental mathematical models which are usually employed to describe the motion of real mechanical systems. Special consideration is given to the study of motion under constraints, and also to problems concerned with the realization of constraints in dynamics. Chapter 3 is concerned with the symmetry groups of mechanical systems and the corresponding conservation laws. Also discussed are various aspects of the theory of the reduction of order for systems with symmetry, often used in applications. Chapter 4 contains abrief survey of various approaches to the problem of the integrability of the equations of motion, and discusses some of the most general and effective methods of integrating these equations. Various elassical examples of integrated problems are outlined. The material pre sen ted in this chapter is used in Chapter 5, which is devoted to one of the most fruitful branches of mechanics - perturbation theory. The main task of perturbation theory is the investigation of problems of mechanics which are" elose" to exact1y integrable problems.
Download or read book On the Splitting of Invariant Manifolds in Multidimensional Near Integrable Hamiltonian Systems written by Pierre Lochak and published by American Mathematical Soc.. This book was released on 2003 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. This book offers introduction of a canonically invariant scheme for the computation of the splitting matrix.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1967 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Nonlinear Physical Systems written by Oleg N. Kirillov and published by John Wiley & Sons. This book was released on 2013-12-11 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.
Download or read book Encyclopedia of Nonlinear Science written by Alwyn Scott and published by Routledge. This book was released on 2006-05-17 with total page 1107 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
Download or read book Nonlinear Dynamics in Engineering Systems written by Werner Schiehlen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Union of Theoretical and Applied Mechanics (IUTAM) initiated and sponsored an International Symposium on Nonlinear Dynamics in Engineering Systems held in 1989 in Stuttgart, FRG. The Symposium was intended to bring together scientists working in different fields of dynamics to exchange ideas and to discuss new trends with special emphasis on nonlinear dynamics in engineering systems. A Scientific Committee was appointed by the Bureau of IUTAM with the following members: S. Arimoto (Japan), F.L. Chernousko (USSR), P.J. Holmes (USA), C.S. Hsu (USA), G. looss (France), F.C. Moon (USA), W. Schiehlen (FRG), Chairman, G. Schmidt (GDR), W. Szemplinska-Stupnicka (Poland), J.M.T. Thompson (UK), H. Troger (Austria). This committee selected the participants to be invited and the papers to be presented at the Symposium. As a result of this procedure 78 active scientific participants from 22 countries followed the invitation, and 44 papers were presented in lecture and poster sessions. They are collected in this volume. At the Symposium an exhibition with experiments took place and the movie "An Introduction to the Analysis of Chaotic Dynamics" by E.J. Kreuzer et.al. was presented. The scientific lectures were devoted to the following topics: o Dynamic Structural Engineering Problems, o Analysis of Nonlinear Dynamic Systems, o Bifurcation Problems, o Chaotic Dynamics and Control Problems, o Miscellaneous Problems, o Experimental and Theoretical Investigations, o Chaotic Oscillations of Engineering Systems, o Characterization of Nonlinear Dynamic Systems, o Nonlinear Stochastic Systems.