EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonvolatile Semiconductor Memory Technology

Download or read book Nonvolatile Semiconductor Memory Technology written by William D. Brown and published by Wiley-IEEE Press. This book was released on 1998 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference book provides electronics engineers with the technical data and perspective necessary for the intelligent selection, specification, and application of nonvolatile semiconductor memory devices. A "one-stop shopping" tool for the working engineer, this book presents the fundamental aspects of nonvolatile semiconductor memory technologies, devices, reliability, and applications.

Book Nonvolatile Semiconductor Memories

Download or read book Nonvolatile Semiconductor Memories written by Chenming Hu and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1991 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Memories and Systems

Download or read book Semiconductor Memories and Systems written by Andrea Redaelli and published by Woodhead Publishing. This book was released on 2022-06-07 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Memories and Systems provides a comprehensive overview of the current state of semiconductor memory at the technology and system levels. After an introduction on market trends and memory applications, the book focuses on mainstream technologies, illustrating their current status, challenges and opportunities, with special attention paid to scalability paths. Technologies discussed include static random access memory (SRAM), dynamic random access memory (DRAM), non-volatile memory (NVM), and NAND flash memory. Embedded memory and requirements and system level needs for storage class memory are also addressed. Each chapter covers physical operating mechanisms, fabrication technologies, and the main challenges to scalability. Finally, the work reviews the emerging trends for storage class memory, mainly focusing on the advantages and opportunities of phase change based memory technologies. Features contributions from experts from leading companies in semiconductor memory Discusses physical operating mechanisms, fabrication technologies and paths to scalability for current and emerging semiconductor memories Reviews primary memory technologies, including SRAM, DRAM, NVM and NAND flash memory Includes emerging storage class memory technologies such as phase change memory

Book Semiconductor Memories

Download or read book Semiconductor Memories written by Ashok K. Sharma and published by Wiley-IEEE Press. This book was released on 2002-09-10 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Memories provides in-depth coverage in the areas of design for testing, fault tolerance, failure modes and mechanisms, and screening and qualification methods including. * Memory cell structures and fabrication technologies. * Application-specific memories and architectures. * Memory design, fault modeling and test algorithms, limitations, and trade-offs. * Space environment, radiation hardening process and design techniques, and radiation testing. * Memory stacks and multichip modules for gigabyte storage.

Book Nonvolatile Memories

Download or read book Nonvolatile Memories written by Tseung-Yuen Tseng and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Semiconductor Memories

Download or read book Advanced Semiconductor Memories written by Ashok K. Sharma and published by Wiley-IEEE Press. This book was released on 2003 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable reference for the most vital microelectronic components in the marketplace DRAMs are the technology drivers of high volume semiconductor fabrication processes for new generation products that, in addition to computer markets, are finding increased usage in automotive, aviation, military and space, telecommunications, and wireless industries. A new generation of high-density and high-performance memory architectures evolving for mass storage devices, including embedded memories and nonvolatile flash memories, are serving a diverse range of applications. Comprehensive and up to date, Advanced Semiconductor Memories: Architectures, Designs, and Applications offers professionals in the semiconductor and related industries an in-depth review of advanced semiconductor memories technology developments. It provides details on: Static Random Access Memory technologies including advanced architectures, low voltage SRAMs, fast SRAMs, SOI SRAMs, and specialty SRAMs (multiport, FIFOs, CAMs) High Performance Dynamic Random Access Memory-DDRs, synchronous DRAM/SGRAM features and architectures, EDRAM, CDRAM, Gigabit DRAM scaling issues and architectures, multilevel storage DRAMs, and SOI DRAMs Applications-specific DRAM architectures and designs - VRAMs, DDR SGRAMs, RDRAMs, SLDRAMs, 3-D RAM Advanced Nonvolatile Memory designs and technologies, including floating gate cell theory, EEPROM/flash memory cell design, and multilevel flash FRAMs and reliability issues Embedded memory designs and applications, including cache, merged processor, DRAM architectures, memory cards, and multimedia applications Future memory directions with megabytes to terabytes storage capacities using RTDs, single electron memories, etc. A continuation of the topics introduced in Semiconductor Memories: Technology, Testing, and Reliability, the author's earlier work, Advanced Semiconductor Memories: Architectures, Designs, and Applications offers a much-needed reference to the major developments and future directions of advanced semiconductor memory technology.

Book VLSI Design of Non Volatile Memories

Download or read book VLSI Design of Non Volatile Memories written by Giovanni Campardo and published by Springer Science & Business Media. This book was released on 2005-01-18 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: VLSI-Design for Non-Volatile Memories is intended for electrical engineers and graduate students who want to enter into the integrated circuit design world. Non-volatile memories are treated as an example to explain general design concepts. Practical illustrative examples of non-volatile memories, including flash types, are showcased to give insightful examples of the discussed design approaches. A collection of photos is included to make the reader familiar with silicon aspects. Throughout all parts of this book, the authors have taken a practical and applications-driven point of view, providing a comprehensive and easily understood approach to all the concepts discussed. Giovanni Campardo and Rino Micheloni have a solid track record of leading design activities at the STMicroelectronics Flash Division. David Novosel is President and founder of Intelligent Micro Design, Inc., Pittsburg, PA.

Book Advances in Non volatile Memory and Storage Technology

Download or read book Advances in Non volatile Memory and Storage Technology written by Yoshio Nishi and published by Elsevier. This book was released on 2014-06-24 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)

Book Nonvolatile Memory Technologies with Emphasis on Flash

Download or read book Nonvolatile Memory Technologies with Emphasis on Flash written by Joe Brewer and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.

Book Nonvolatile Memory Design

Download or read book Nonvolatile Memory Design written by Hai Li and published by CRC Press. This book was released on 2017-12-19 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances, the authors discuss key design methodologies as well as the various functions and capabilities of the three nonvolatile memory technologies.

Book Silicon Non Volatile Memories

Download or read book Silicon Non Volatile Memories written by Barbara de Salvo and published by John Wiley & Sons. This book was released on 2013-05-10 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor flash memory is an indispensable component of modern electronic systems which has gained a strategic position in recent decades due to the progressive shift from computing to consumer (and particularly mobile) products as revenue drivers for Integrated Circuits (IC) companies. This book provides a comprehensive overview of the different technological approaches currently being studied to fulfill future memory requirements. Two main research paths are identified and discussed. Different "evolutionary paths" based on the use of new materials (such as silicon nanocrystals for storage nodes and high-k insulators for active dielectrics) and of new transistor structures (such as multi-gate devices) are investigated in order to extend classical floating gate technology to the 32 nm node. "Disruptive paths" based on new storage mechanisms or new technologies (such as phase-change devices, polymer or molecular cross-bar memories) are also covered in order to address 22 nm and smaller IC generations. Finally, the main factors at the origin of these phenomena are identified and analyzed, providing pointers on future research activities and developments in this area.

Book Semiconductor Memory Devices and Circuits

Download or read book Semiconductor Memory Devices and Circuits written by Shimeng Yu and published by CRC Press. This book was released on 2022-04-19 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers semiconductor memory technologies from device bit-cell structures to memory array design with an emphasis on recent industry scaling trends and cutting-edge technologies. The first part of the book discusses the mainstream semiconductor memory technologies. The second part of the book discusses the emerging memory candidates that may have the potential to change the memory hierarchy, and surveys new applications of memory technologies for machine/deep learning applications. This book is intended for graduate students in electrical and computer engineering programs and researchers or industry professionals in semiconductors and microelectronics. Explains the design of basic memory bit-cells including 6-transistor SRAM, 1-transistor-1-capacitor DRAM, and floating gate/charge trap FLASH transistor Examines the design of the peripheral circuits including the sense amplifier and array-level organization for the memory array Examines industry trends of memory technologies such as FinFET based SRAM, High-Bandwidth-Memory (HBM), 3D NAND Flash, and 3D X-point array Discusses the prospects and challenges of emerging memory technologies such as PCM, RRAM, STT-MRAM/SOT-MRAM and FeRAM/FeFET Explores the new applications such as in-memory computing for AI hardware acceleration.

Book Nanoscale Semiconductor Memories

Download or read book Nanoscale Semiconductor Memories written by Santosh K. Kurinec and published by CRC Press. This book was released on 2017-07-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Book Logic Non volatile Memory

Download or read book Logic Non volatile Memory written by Charles Ching-Hsiang Hsu and published by World Scientific. This book was released on 2014 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Would you like to add the capabilities of the Non-Volatile Memory (NVM) as a storage element in your silicon integrated logic circuits, and as a trimming sector in your high voltage driver and other silicon integrated analog circuits? Would you like to learn how to embed the NVM into your silicon integrated circuit products to improve their performance? This book is written to help you. It provides comprehensive instructions on fabricating the NVM using the same processes you are using to fabricate your logic integrated circuits. We at our eMemory company call this technology the embedded Logic NVM. Because embedded Logic NVM has simple fabrication processes, it has replaced the conventional NVM in many traditional and new applications, including LCD driver, LED driver, MEMS controller, touch panel controller, power management unit, ambient and motion sensor controller, micro controller unit (MCU), security ID setting tag, RFID, NFC, PC camera controller, keyboard controller, and mouse controller. The recent explosive growth of the Logic NVM indicates that it will soon dominate all NVM applications. The embedded Logic NVM was invented and has been implemented in users' applications by the 200+ employees of our eMemory company, who are also the authors and author-assistants of this book. This book covers the following Logic NVM products: One Time Programmable (OTP) memory, Multiple Times Programmable (MTP) memory, Flash memory, and Electrically Erasable Programmable Read Only Memory (EEPROM). The fundamentals of the NVM are described in this book, which include: the physics and operations of the memory transistors, the basic building block of the memory cells and the access circuits. All of these products have been used continuously by the industry worldwide. In-depth readers can attain expert proficiency in the implementation of the embedded Logic NVM technology in their products.

Book Resistive Switching

Download or read book Resistive Switching written by Daniele Ielmini and published by John Wiley & Sons. This book was released on 2015-12-23 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories. Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text. An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

Book Rad hard Semiconductor Memories

Download or read book Rad hard Semiconductor Memories written by Cristiano Calligaro and published by CRC Press. This book was released on 2022-09-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes.In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects).After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include:  Radiation effects on semiconductor components (TID, SEE) Radiation Hardening by Design (RHBD) Techniques Rad-hard SRAMs Rad-hard PROMs Rad-hard Flash NVMs Rad-hard ReRAMs Rad-hard emerging technologies

Book Embedded Memories for Nano Scale VLSIs

Download or read book Embedded Memories for Nano Scale VLSIs written by Kevin Zhang and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.