Download or read book Nonlinear Time Series written by Jianqing Fan and published by Springer Science & Business Media. This book was released on 2008-09-11 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Download or read book A Course in Time Series Analysis written by Daniel Peña and published by John Wiley & Sons. This book was released on 2011-01-25 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
Download or read book Dimension Estimation and Models written by Howell Tong and published by World Scientific. This book was released on 1993 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first in the new series Nonlinear Time Series and Chaos. The general aim of the series is to provide a bridge between the two communities by inviting prominent researchers in their respective fields to give a systematic account of their chosen topics, starting at the beginning and ending with the latest state. It is hoped that researchers in both communities will find the topics relevant and thought provoking. In this volume, the first chapter, written by Professor Colleen Cutler, is a comprehensive account of the theory and estimation of fractal dimension, a topic of central importance in dynamical systems, which has recently attracted the attention of the statisticians. As it is natural to study a stochastic dynamical system within the framework of Markov chains, it is therefore relevant to study their limiting behaviour. The second chapter, written by Professor Kung-Sik Chan, reviews some limit theorems of Markov chains and illustrates their relevance to chaos. The next three chapters are concerned with specific models. Briefly, Chapter Three by Professor Peter Lewis and Dr Bonnie Ray and Chapter Four by Professor Peter Brockwell generalise the class of self-exciting threshold autoregressive models in different directions. In Chapter Three, the new and powerful methodology of multivariate adaptive regression splines (MARS) is adapted to time series data. Its versatility is illustrated by reference to the very interesting and complex sea surface temperature data. Chapter Four exploits the greater tractability of continuous-time Markov approach to discrete-time data. The approach is particularly relevant to irregularly sampled data. The concluding chapter, by Professor Pham Dinh Tuan, is likely to be the most definitive account of bilinear models in discrete time to date.
Download or read book Time Series Analysis Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.
Download or read book Time Series and Related Topics written by Ching-Zong Wei and published by IMS. This book was released on 2006 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Exploration of a Nonlinear World written by Kung-sik Chan and published by World Scientific. This book was released on 2009 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensions of Howell Tong's threshold approach to other fields of statistics abound. This volume is dedicated to his 65th birthday and consists of in-depth contributions from leading experts in a variety of fields of statistics, ecology, economics and finance as well as some of Tong's reprints.
Download or read book Time Series Prediction written by Andreas S. Weigend and published by Routledge. This book was released on 2018-05-04 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a summary of a time series forecasting competition that was held a number of years ago. It aims to provide a snapshot of the range of new techniques that are used to study time series, both as a reference for experts and as a guide for novices.
Download or read book Hands On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Download or read book Time Series Analysis Methods and Applications written by and published by Elsevier. This book was released on 2012-05-18 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments.The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. - Comprehensively presents the various aspects of statistical methodology - Discusses a wide variety of diverse applications and recent developments - Contributors are internationally renowened experts in their respective areas
Download or read book Time Series Analysis written by George E. P. Box and published by John Wiley & Sons. This book was released on 2015-05-29 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Fourth Edition "The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control." —Mathematical Reviews Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject. Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include: A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the exposition Time Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Artificial Intelligence Applications on Wall Street written by Stephen Slade and published by Routledge. This book was released on 2017-11-30 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1996 as a special issue journal, Artificial Intelligence Applications on Wall Street, presents a series of articles derived from papers at the Third International Conference on Artificial Intelligence Applications on Wall Street. The volume addresses how Artificial Intelligence can be used to address the variety of issues in that arise in the world of investments, such as synthetic instruments, forecasting and surveillance. It examines the potential problems surrounding economic assumption of rationality in a global market, and how artificial intelligence can push the bounds of rationality.
Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2001 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Chemical Process Performance Evaluation written by Ali Cinar and published by CRC Press. This book was released on 2007-01-11 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in process monitoring, data analysis, and control systems are increasingly useful for maintaining the safety, flexibility, and environmental compliance of industrial manufacturing operations. Focusing on continuous, multivariate processes, Chemical Process Performance Evaluation introduces statistical methods and modeling te
Download or read book Bayesian Reasoning and Gaussian Processes for Machine Learning Applications written by Hemachandran K and published by CRC Press. This book was released on 2022-04-14 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces Bayesian reasoning and Gaussian processes into machine learning applications. Bayesian methods are applied in many areas, such as game development, decision making, and drug discovery. It is very effective for machine learning algorithms in handling missing data and extracting information from small datasets. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications uses a statistical background to understand continuous distributions and how learning can be viewed from a probabilistic framework. The chapters progress into such machine learning topics as belief network and Bayesian reinforcement learning, which is followed by Gaussian process introduction, classification, regression, covariance, and performance analysis of Gaussian processes with other models. FEATURES Contains recent advancements in machine learning Highlights applications of machine learning algorithms Offers both quantitative and qualitative research Includes numerous case studies This book is aimed at graduates, researchers, and professionals in the field of data science and machine learning.
Download or read book Routledge Library Editions Financial Markets written by Various and published by Routledge. This book was released on 2021-07-09 with total page 5571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volumes in this set, originally published between 1970 and 1996, draw together research by leading academics in the area of economic and financial markets, and provide a rigorous examination of related key issues. The volumes examine the stock exchange, capital cities as financial centres, international capital, the financial system, bond duration, security market indices and artificial intelligence applications on Wall Street, whilst also exploring the general principles and practices of financial markets in various countries. This set will be of particular interest to students of economics and finance respectively.