EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonconvex Matrix Completion

Download or read book Nonconvex Matrix Completion written by Ji Chen and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones, with broad machine learning applications including collaborative filtering, system identification, global positioning, etc. This dissertation aims to analyze the nonconvex matrix problem from geometric and algorithmic perspectives. The first part of the dissertation, i.e., Chapter 2 and 3, focuses on analyzing the nonconvex matrix completion problem from the geometric perspective. Geometric analysis has been conducted on various low-rank recovery problems including phase retrieval, matrix factorization and matrix completion in recent few years. Taking matrix completion as an example, with assumptions on the underlying matrix and the sampling rate, all the local minima of the nonconvex objective function were shown to be global minima, i.e., nonconvex optimization can recover the underlying matrix exactly. In Chapter 2, we propose a model-free framework for nonconvex matrix completion: We characterize how well local-minimum based low-rank factorization approximates the underlying matrix without any assumption on it. As an implication, a corollary of our main theorem improves the state-of-the-art sampling rate required for nonconvex matrix completion to rule out spurious local minima. In practice, additional structures are usually employed in order to improve the accuracy of matrix completion. Examples include subspace constraints formed by side information in collaborative filtering, and skew symmetry in pairwise ranking. Chapter 3 performs a unified geometric analysis of nonconvex matrix completion with linearly parameterized factorization, which covers the aforementioned examples as special cases. Uniform upper bounds for estimation errors are established for all local minima, provided assumptions on the sampling rate and the underlying matrix are satisfied. The second part of the dissertation (Chapter 4) focuses on algorithmic analysis of nonconvex matrix completion. Row-wise projection/regularization has become a widely adapted assumption due to its convenience for analysis, though it was observed to be unnecessary in numerical simulations. Recently the gap between theory and practice has been overcome for positive semidefinite matrix completion via so called leave-one-out analysis. In Chapter 4, we extend the leave-one-out analysis to the rectangular case, and more significantly, improve the required sampling rate for convergence guarantee.

Book Handbook of Robust Low Rank and Sparse Matrix Decomposition

Download or read book Handbook of Robust Low Rank and Sparse Matrix Decomposition written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-05-27 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Book Matrix Methods in Data Mining and Pattern Recognition

Download or read book Matrix Methods in Data Mining and Pattern Recognition written by Lars Elden and published by SIAM. This book was released on 2007-07-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Book Generalized Low Rank Models

Download or read book Generalized Low Rank Models written by Madeleine Udell and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Book Handbook of Robust Low Rank and Sparse Matrix Decomposition

Download or read book Handbook of Robust Low Rank and Sparse Matrix Decomposition written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-09-20 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Book Non negative Matrix Factorization Techniques

Download or read book Non negative Matrix Factorization Techniques written by Ganesh R. Naik and published by Springer. This book was released on 2015-09-25 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects new results, concepts and further developments of NMF. The open problems discussed include, e.g. in bioinformatics: NMF and its extensions applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining etc. The research results previously scattered in different scientific journals and conference proceedings are methodically collected and presented in a unified form. While readers can read the book chapters sequentially, each chapter is also self-contained. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF.

Book Non convex Optimization for Machine Learning

Download or read book Non convex Optimization for Machine Learning written by Prateek Jain and published by Foundations and Trends in Machine Learning. This book was released on 2017-12-04 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.

Book The Birth of Numerical Analysis

Download or read book The Birth of Numerical Analysis written by Adhemar Bultheel and published by World Scientific. This book was released on 2010 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadrature (J N Lyness); Numerical Methods for Ordinary Differential Equations: Early Days (J C Butcher); Interview with Herbert Bishop Keller (H M Osinga); A Personal Perspective on the History of the Numerical Analysis of Fredholm Integral Equations of the Second Kind (K Atkinson); Memoires on Building on General Purpose Numerical Algorithms Library (B Ford); Recent Trends in High Performance Computing (J J Dongarra et al.); Nonnegativity Constraints in Numerical Analysis (D-H Chen & R J Plemmons); On Nonlinear Optimization Since 1959 (M J D Powell); The History and Development of Numerical Analysis in Scotland: A Personal Perspective (G Alistair Watson); Remembering Philip Rabinowitz (P J Davis & A S Fraenkel); My Early Experiences with Scientific Computation (P J Davis); Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations (R Piessens). Readership: Mathematicians in numerical analysis and mathematicians who are interested in the history of mathematics.

Book Algorithmic Aspects of Machine Learning

Download or read book Algorithmic Aspects of Machine Learning written by Ankur Moitra and published by Cambridge University Press. This book was released on 2018-09-27 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Book Optimality Guarantees for Non convex Low Rank Matrix Recovery Problems

Download or read book Optimality Guarantees for Non convex Low Rank Matrix Recovery Problems written by Christopher Dale White and published by . This book was released on 2015 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low rank matrices lie at the heart of many techniques in scientific computing and machine learning. In this thesis, we examine various scenarios in which we seek to recover an underlying low rank matrix from compressed or noisy measurements. Specifically, we consider the recovery of a rank r positive semidefinite matrix XX[superscript T] [element] R[superscript n x n] from m scalar measurements of the form [mathematic equation] via minimization of the natural l2 loss function [mathematic equation]; we also analyze the quadratic nonnegative matrix factorization (QNMF) approach to clustering where the matrix to be factorized is the transition matrix for a reversible Markov chain. In all of these instances, the optimization problem we wish to solve has many local optima and is highly non-convex. Instead of analyzing convex relaxations, which tend to be complicated and computationally expensive, we operate directly on the natural non-convex problems and prove both local and global optimality guarantees for a family of algorithms.

Book Nonnegative Matrix Factorization

Download or read book Nonnegative Matrix Factorization written by Nicolas Gillis and published by SIAM. This book was released on 2020-12-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

Book Nonnegative Matrix and Tensor Factorizations

Download or read book Nonnegative Matrix and Tensor Factorizations written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 2009-07-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Book Introduction to the Theory of Nonlinear Optimization

Download or read book Introduction to the Theory of Nonlinear Optimization written by Johannes Jahn and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introductory text to optimization theory in normed spaces and covers all areas of nonlinear optimization. It presents fundamentals with particular emphasis on the application to problems in the calculus of variations, approximation and optimal control theory. The reader is expected to have a basic knowledge of linear functional analysis.

Book Completely Positive Matrices

Download or read book Completely Positive Matrices written by Abraham Berman and published by World Scientific. This book was released on 2003 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."

Book Handbook of Variational Methods for Nonlinear Geometric Data

Download or read book Handbook of Variational Methods for Nonlinear Geometric Data written by Philipp Grohs and published by Springer Nature. This book was released on 2020-04-03 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Book Optimization Algorithms on Matrix Manifolds

Download or read book Optimization Algorithms on Matrix Manifolds written by P.-A. Absil and published by Princeton University Press. This book was released on 2009-04-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Book Compressed Sensing and Its Applications

Download or read book Compressed Sensing and Its Applications written by Holger Boche and published by Birkhäuser. This book was released on 2019-08-13 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.