EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neuro motor control and feed forward models of locomotion in humans

Download or read book Neuro motor control and feed forward models of locomotion in humans written by Marco Iosa and published by Frontiers Media SA. This book was released on 2015-07-29 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Locomotion involves many different muscles and the need of controlling several degrees of freedom. Despite the Central Nervous System can finely control the contraction of individual muscles, emerging evidences indicate that strategies for the reduction of the complexity of movement and for compensating the sensorimotor delays may be adopted. Experimental evidences in animal and lately human model led to the concept of a central pattern generator (CPG) which suggests that circuitry within the distal part of CNS, i.e. spinal cord, can generate the basic locomotor patterns, even in the absence of sensory information. Different studies pointed out the role of CPG in the control of locomotion as well as others investigated the neuroplasticity of CPG allowing for gait recovery after spinal cord lesion. Literature was also focused on muscle synergies, i.e. the combination of (locomotor) functional modules, implemented in neuronal networks of the spinal cord, generating specific motor output by imposing a specific timing structure and appropriate weightings to muscle activations. Despite the great interest that this approach generated in the last years in the Scientific Community, large areas of investigations remain available for further improvement (e.g. the influence of afferent feedback and environmental constrains) for both experimental and simulated models. However, also supraspinal structures are involved during locomotion, and it has been shown that they are responsible for initiating and modifying the features of this basic rhythm, for stabilising the upright walking, and for coordinating movements in a dynamic changing environment. Furthermore, specific damages into spinal and supraspinal structures result in specific alterations of human locomotion, as evident in subjects with brain injuries such as stroke, brain trauma, or people with cerebral palsy, in people with death of dopaminergic neurons in the substantia nigra due to Parkinson’s disease, or in subjects with cerebellar dysfunctions, such as patients with ataxia. The role of cerebellum during locomotion has been shown to be related to coordination and adaptation of movements. Cerebellum is the structure of CNS where are conceivably located the internal models, that are neural representations miming meaningful aspects of our body, such as input/output characteristics of sensorimotor system. Internal model control has been shown to be at the basis of motor strategies for compensating delays or lacks in sensorimotor feedbacks, and some aspects of locomotion need predictive internal control, especially for improving gait dynamic stability, for avoiding obstacles or when sensory feedback is altered or lacking. Furthermore, despite internal model concepts are widespread in neuroscience and neurocognitive science, neurorehabilitation paid far too little attention to the potential role of internal model control on gait recovery. Many important scientists have contributed to this Research Topic with original studies, computational studies, and review articles focused on neural circuits and internal models involved in the control of human locomotion, aiming at understanding the role played in control of locomotion of different neural circuits located at brain, cerebellum, and spinal cord levels.

Book Cognitive and Computational Neuroscience

Download or read book Cognitive and Computational Neuroscience written by Seyyed Abed Hosseini and published by BoD – Books on Demand. This book was released on 2018-05-30 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book "Cognitive and Computational Neuroscience - Principles, Algorithms and Applications" will answer the following question and statements: System-level neural modeling: what and why? We know a lot about the brain! Need to integrate data: molecular/cellular/system levels. Complexity: need to abstract away higher-order principles. Models are tools to develop explicit theories, constrained by multiple levels (neural and behavioral). Key: models (should) make novel testable predictions on both neural and behavioral levels. Models are useful tools for guiding experiments. The hope is that the information provided in this book will trigger new researches that will help to connect basic neuroscience to clinical medicine.

Book Primates

    Book Details:
  • Author : Mark Burke
  • Publisher : BoD – Books on Demand
  • Release : 2018-05-30
  • ISBN : 1789232163
  • Pages : 190 pages

Download or read book Primates written by Mark Burke and published by BoD – Books on Demand. This book was released on 2018-05-30 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonhuman primates (referred to here as primates) provide an invaluable source of information for a multitude of scientific fields including ecology, evolution, biology, psychology, and biomedicine. This volume addresses various topics related to primate research that includes phylogeny, natural observations, primate ecosystem, sociocognitive abilities, disease pathophysiology, and neuroscience. Topics discussed here provide a platform for which to address human evolution, habitat preservation, human psyche, and pathophysiology of disease.

Book Progress in Motor Control

    Book Details:
  • Author : Michael J. Richardson
  • Publisher : Springer Science & Business Media
  • Release : 2013-01-09
  • ISBN : 1461454654
  • Pages : 205 pages

Download or read book Progress in Motor Control written by Michael J. Richardson and published by Springer Science & Business Media. This book was released on 2013-01-09 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the most recent installment of the Progress in Motor Control series. It contains contributions based on presentations by invited speakers at the Progress in Motor Control VIII meeting held in Cincinnati, OH, USA in July, 2011. Progress in Motor Control is the official scientific meeting of the International Society of Motor Control (ISMC). The Progress in Motor Control VIII meeting, and consequently this volume, provide a broad perspective on the latest research on motor control in humans and other species.

Book Motor Control

    Book Details:
  • Author : Frederic Danion, PhD
  • Publisher : Oxford University Press
  • Release : 2011
  • ISBN : 0195395271
  • Pages : 536 pages

Download or read book Motor Control written by Frederic Danion, PhD and published by Oxford University Press. This book was released on 2011 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motor control has established itself as an area of scientific research characterized by a multi-disciplinary approach. The book offers a collection of chapters written by the most prominent researchers in the field.

Book The Neural Control of Movement

Download or read book The Neural Control of Movement written by Patrick J. Whelan and published by Academic Press. This book was released on 2020-08-12 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: From speech to breathing to overt movement contractions of muscles are the only way other than sweating whereby we literally make a mark on the world. Locomotion is an essential part of this equation and exciting new developments are shedding light on the mechanisms underlying how this important behavior occurs. The Neural Control of Movement discusses these developments across a variety of species including man. The editors focus on highlighting the utility of different models from invertebrates to vertebrates. Each chapter discusses how new approaches in neuroscience are being used to dissect and control neural networks. An area of emphasis is on vertebrate motor networks and particularly the spinal cord. The spinal cord is unique because it has seen the use of genetic tools allowing the dissection of networks for over ten years. This book provides practical details on model systems, approaches, and analysis approaches related to movement control. This book is written for neuroscientists interested in movement control. Provides practice details on model systems, approaches, and analysis approaches related to movement control Discusses how recent advances like optogenetics and chemogenetics affect the need for model systems to be modified (or not) to work for studies of movement and motor control Written for neuroscientists interested in movement control, especially movement disorders like Parkinson’s, MS, spinal cord injury, and stroke

Book Determinism and Self Organization of Human Perception and Performance

Download or read book Determinism and Self Organization of Human Perception and Performance written by Till Frank and published by Springer Nature. This book was released on 2019-11-04 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses human perception and performance within the framework of the theory of self-organizing systems. To that end, it presents a variety of phenomena and experimental findings in the research field, and provides an introduction to the theory of self-organization, with a focus on amplitude equations, order parameter and Lotka-Volterra equations. The book demonstrates that relating the experimental findings to the mathematical models provides an explicit account for the causal nature of human perception and performance. In particular, the notion of determinism versus free will is discussed in this context. The book is divided into four main parts, the first of which discusses the relationship between the concept of determinism and the fundamental laws of physics. The second part provides an introduction to using the self-organization approach from physics to understand human perception and performance, a strategy used throughout the remainder of the book to connect experimental findings and mathematical models. In turn, the third part of the book focuses on investigating performance guided by perception: climbing stairs and grasping tools are presented in detail. Perceptually relevant bifurcation parameters in the mathematical models are also identified, e.g. in the context of walk-to-run gait transitions. Chains of perceptions and actions together with their underlying mechanisms are then presented, and a number of experimental phenomena – such as selective attention, priming, child play, bistable perception, retrieval-induced forgetting, functional fixedness and memory effects exhibiting hysteresis with positive or negative sign – are discussed. Human judgment making, internal experiences such as dreaming and thinking, and Freud’s concept of consciousness are also addressed. The fourth and last part of the book explores several specific topics such as learning, social interactions between two people, life trajectories, and applications in clinical psychology. In particular, episodes of mania and depression under bipolar disorder, perception under schizophrenia, and obsessive-compulsive rituals are discussed. This book is intended for researchers and graduate students in psychology, physics, applied mathematics, kinesiology, and the sport sciences who want to learn about the foundations of the field. Written for a mixed audience, the experiments and concepts are presented using non-technical language throughout. In addition, each chapter includes more advanced sections for modelers in the fields of physics and applied mathematics.

Book Progress in Motor Control  Structure function relations in voluntary movements

Download or read book Progress in Motor Control Structure function relations in voluntary movements written by Mark L. Latash and published by Human Kinetics. This book was released on 1998 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Motor Control, Volume Two, features 12 chapters by internationally known researchers in the field of motor control. Comprehensive and up to date, the reference reflects the spirit of the great Nikolai Bernstein, one of the founders of the area now defined as motor control and a significant contributor to the structure-function controversy. Progress in Motor Control, Volume Two, preserves many of the features that made the first volume a state-of-the-art reference and presents these new features: -A reader-friendly design -More than 170 figures to illustrate the scientific ideas expressed -Many up-to-date references to help readers find the most current research in the field Less theoretical than the first volume, this book provides readers with valuable information on these subjects: -The direct relations of the motor function to neurophysiological and/or biomechanical structures -The role of the motor cortex and other brain structures in motor control and motor learning -The multidimensional and temporal regulation of limb mechanics by spinal circuits In this unique forum, prominent motor control scientists contribute varying viewpoints on different aspects of structure-function relations. These prominent scholars include scientists from the former Soviet Union who either knew Bernstein personally or worked closely with his students, biomechanists and neurophysiologists who focus on the role of particular body structures in the movement of production, and clinicians who analyze changes in movements with children and adults with neurological disorders. The book also gives an overview of the disagreement between Ivan Pavlov and Nikolai Bernstein, which is one of the most fascinating and controversial disagreements in the history of contemporary neurophysiology. Whether you're a researcher, or graduate or postdoctoral student, Progress in Motor Control, Volume Two, thoroughly summarizes the latest motor control issues, research, and theories, and it identifies problems in need of investigation.

Book Progress in Motor Control  Bernstein s traditions in movement studies

Download or read book Progress in Motor Control Bernstein s traditions in movement studies written by Mark L. Latash and published by Human Kinetics. This book was released on 1998 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributors of the 16 papers were charged with reviewing urgent problems of motor control rather than reporting on their own research, in order to produce a broad reference for professionals and graduate students in the field. Four of them worked directly with Nikolai Berstein (1896-1966), the Russian scientist who first worked in the field and wh.

Book The Neuroscience of Human Movement

Download or read book The Neuroscience of Human Movement written by Charles T. Leonard and published by . This book was released on 1998 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the basics of neuroscience, including a chapter on the vocabulary of the nervous system (a great brush-up even for those who have some prior knowledge of neuroscience), this excellent reference eases the student through more difficult topics such as reflexes, eye-hand coordination, and neural control of running and walking. Each chapter begins with an outline, and a comprehensive glossary rounds out the book. More than 50 original line drawings illustrate key concepts. * Presents difficult information on neuroscience in an easy-to-understand manner. * Explains the major organizational subdivisions of the central nervous system briefly, with an emphasis on structures and structural relationships that impact motor control. * Presents typical spinal cord and brainstem reflexes involved in motor control and discusses the methods for using these reflexes to influence strength gains and muscle flexibility. * Includes the most current research on the neural control of hand-eye coordination, discussed in relation to its importance to rehabilitation medicine and childrens' physical education. * Chapter on the neural control of human locomotion integrates concepts in previous chapters to show the harmony of neural interaction that is needed to complete any motor act. * Includes the latest research (by the author) showing that humans can consciously alter reflex activity and the impact of these findings on athletic performance, recovery from injury, and motor learning. * Concepts are illustrated with anecdotes and examples making difficult information less intimidating and easier to grasp. * Includes topics like hand-eye coordination and human locomotion, applying neuroscience to everyday activities and making highly theoretical information useful. * More than 50 original line drawings illustrate key concepts. * Chapter outlines give students an overview of the information to be presented. * Comprehensive glossary provides an easy review of difficult terminology.

Book Neural and Computational Modeling of Movement Control

Download or read book Neural and Computational Modeling of Movement Control written by Ning Lan and published by Frontiers Media SA. This book was released on 2017-04-17 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the study of sensorimotor systems, an important research goal has been to understand the way neural networks in the spinal cord and brain interact to control voluntary movement. Computational modeling has provided insight into the interaction between centrally generated commands, proprioceptive feedback signals and the biomechanical responses of the moving body. Research in this field is also driven by the need to improve and optimize rehabilitation after nervous system injury and to devise biomimetic methods of control in robotic devices. This research topic is focused on efforts dedicated to identify and model the neuromechanical control of movement. Neural networks in the brain and spinal cord are known to generate patterned activity that mediates coordinated activation of multiple muscles in both rhythmic and discrete movements, e.g. locomotion and reaching. Commands descending from the higher centres in the CNS modulate the activity of spinal networks, which control movement on the basis of sensory feedback of various types, including that from proprioceptive afferents. The computational models will continue to shed light on the central strategies and mechanisms of sensorimotor control and learning. This research topic demonstrated that computational modeling is playing a more and more prominent role in the studies of postural and movement control. With increasing ability to gather data from all levels of the neuromechanical sensorimotor systems, there is a compelling need for novel, creative modeling of new and existing data sets, because the more systematic means to extract knowledge and insights about neural computations of sensorimotor systems from these data is through computational modeling. While models should be based on experimental data and validated with experimental evidence, they should also be flexible to provide a conceptual framework for unifying diverse data sets, to generate new insights of neural mechanisms, to integrate new data sets into the general framework, to validate or refute hypotheses and to suggest new testable hypotheses for future experimental investigation. It is thus expected that neural and computational modeling of the sensorimotor system should create new opportunities for experimentalists and modelers to collaborate in a joint endeavor to advance our understanding of the neural mechanisms for postural and movement control. The editors would like to thank Professor Arthur Prochazka, who helped initially to set up this research topic, and all authors who contributed their articles to this research topic. Our appreciation also goes to the reviewers, who volunteered their time and effort to help achieve the goal of this research topic. We would also like to thank the staff members of editorial office of Frontiers in Computational Neuroscience for their expertise in the process of manuscript handling, publishing, and in bringing this ebook to the readers. The support from the Editor-in-Chief, Dr. Misha Tsodyks and Dr. Si Wu is crucial for this research topic to come to a successful conclusion. We are indebted to Dr. Si Li and Ms. Ting Xu, whose assistant is important for this ebook to become a reality. Finally, this work is supported in part by grants to Dr. Ning Lan from the Ministry of Science and Technology of China (2011CB013304), the Natural Science Foundation of China (No. 81271684, No. 61361160415, No. 81630050), and the Interdisciplinary Research Grant cross Engineering and Medicine by Shanghai Jiao Tong University (YG20148D09). Dr. Vincent Cheung is supported by startup funds from the Faculty of Medicine of The Chinese University of Hong Kong. Guest Associate Editors Ning Lan, Vincent Cheung, and Simon Gandevia

Book Neurobiology of Motor Control

Download or read book Neurobiology of Motor Control written by Scott L. Hooper and published by John Wiley & Sons. This book was released on 2017-09-05 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.

Book Human Touch in Healthcare

    Book Details:
  • Author : Stephanie Margarete Mueller
  • Publisher : Springer Nature
  • Release : 2023-10-27
  • ISBN : 3662678608
  • Pages : 291 pages

Download or read book Human Touch in Healthcare written by Stephanie Margarete Mueller and published by Springer Nature. This book was released on 2023-10-27 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the essential research findings on human touch and haptic perception in a concise manner for students and health professionals. Focusing on anatomical, neural and physiological as well as psychological, social and clinical aspects, the scope of this book ranges from the fetus in the womb to the older adult in need of care. The chapters can be read individually or consecutively, and cross-chapter content is indicated by chapter references. Key learning points are highlighted at the end of each section, and figures, illustrations, and references facilitate the learning process. The quality of the presented study results has been critically analyzed and only randomized controlled studies are reported, which gives the reader a critical representation of the current state of knowledge. The textbook also provides valuable suggestions for future research by noting blind spots in existing research, and by pointing to methodological challenges in the implementation of high quality studies. Hence, this textbook is not only a representation of current knowledge, but also an epistemological analysis of the research process. There has been a surge of research about the sense of touch in the past ten years, which is incorporated in this book. This textbook will be an invaluable tool for physiotherapists, occupational therapists, nurses and other health professionals in everyday professional life.

Book Neuromechanical Modeling of Posture and Locomotion

Download or read book Neuromechanical Modeling of Posture and Locomotion written by Boris I. Prilutsky and published by Springer. This book was released on 2015-12-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuromechanics is a new, quickly growing field of neuroscience research that merges neurophysiology, biomechanics and motor control and aims at understanding living systems and their elements through interactions between their neural and mechanical dynamic properties. Although research in Neuromechanics is not limited by computational approaches, neuromechanical modeling is a powerful tool that allows for integration of massive knowledge gained in the past several decades in organization of motion related brain and spinal cord activity, various body sensors and reflex pathways, muscle mechanical and physiological properties and detailed quantitative morphology of musculoskeletal systems. Recent work in neuromechanical modeling has demonstrated advantages of such an integrative approach and led to discoveries of new emergent properties of neuromechanical systems. Neuromechanical Modeling of Posture and Locomotion will cover a wide range of topics from theoretical studies linking the organization of reflex pathways and central pattern generating circuits with morphology and mechanics of the musculoskeletal system (Burkholder; Nichols; Shevtsova et al.) to detailed neuromechanical models of postural and locomotor control (Bunderson; Edwards, Marking et al., Ting). Furthermore, uniquely diverse modeling approaches will be presented in the book including a theoretical dynamic analysis of locomotor phase transitions (Spardy and Rubin), a hybrid computational modeling that allows for in vivo interactions between parts of a living organism and a computer model (Edwards et al.), a physical neuromechanical model of the human locomotor system (Lewis), and others.

Book Peripheral and Spinal Mechanisms in the Neural Control of Movement

Download or read book Peripheral and Spinal Mechanisms in the Neural Control of Movement written by M.D. Binder and published by Elsevier. This book was released on 1999-12-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, we have witnessed a striking maturation of our understanding of how neurons in the spinal cord control muscular activity and movement. Paradoxically, a host of new findings have revealed an unexpected versatility in the behavior of these well-studied neural elements and circuits. In this volume, the world's leading experts review the current state of our knowledge of motor control, outline their latest results and developments, and delineate the seminal unresolved questions in this vibrant field of research. The volume begins with a commentary and overview of our current understanding of the peripheral and spinal basis of motor control. The remainder of the volume is divided into seven sections, each focused on a different problem. The first chapter in each section provides some historical review and presages the experimental findings and hypotheses that are discussed in subsequent chapters. Topics include the biomechanics of neuromuscular systems, the properties of motoneurons and the muscle units they control, spinal interneurons, pattern generating circuits, locomotion, descending control of spinal circuits, comparative physiology of motor systems, and motor systems neurophysiology studied in man. The book serves as a unique reference volume and should be essential reading for anyone interested in motor systems. Moreover, the volume's comprehensive coverage of a wide range of topics make it an effective textbook for graduate level courses in motor control neurobiology, kinesiology, physical therapy, and rehabilitation medicine.

Book Human Robotics

    Book Details:
  • Author : Etienne Burdet
  • Publisher : MIT Press
  • Release : 2018-05-04
  • ISBN : 0262536412
  • Pages : 291 pages

Download or read book Human Robotics written by Etienne Burdet and published by MIT Press. This book was released on 2018-05-04 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of biomechanics and neural control that draws on recent advances in robotics to address control problems solved by the human sensorimotor system. This book proposes a transdisciplinary approach to investigating human motor control that synthesizes musculoskeletal biomechanics and neural control. The authors argue that this integrated approach—which uses the framework of robotics to understand sensorimotor control problems—offers a more complete and accurate description than either a purely neural computational approach or a purely biomechanical one. The authors offer an account of motor control in which explanatory models are based on experimental evidence using mathematical approaches reminiscent of physics. These computational models yield algorithms for motor control that may be used as tools to investigate or treat diseases of the sensorimotor system and to guide the development of algorithms and hardware that can be incorporated into products designed to assist with the tasks of daily living. The authors focus on the insights their approach offers in understanding how movement of the arm is controlled and how the control adapts to changing environments. The book begins with muscle mechanics and control, progresses in a logical manner to planning and behavior, and describes applications in neurorehabilitation and robotics. The material is self-contained, and accessible to researchers and professionals in a range of fields, including psychology, kinesiology, neurology, computer science, and robotics.

Book Modularity in Motor Control  From Muscle Synergies to Cognitive Action Representation

Download or read book Modularity in Motor Control From Muscle Synergies to Cognitive Action Representation written by Andrea d'Avella and published by Frontiers Media SA. This book was released on 2016-04-21 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mastering a rich repertoire of motor behaviors, as humans and other animals do, is a surprising and still poorly understood outcome of evolution, development, and learning. Many degrees-of-freedom, non-linear dynamics, and sensory delays provide formidable challenges for controlling even simple actions. Modularity as a functional element, both structural and computational, of a control architecture might be the key organizational principle that the central nervous system employs for achieving versatility and adaptability in motor control. Recent investigations of muscle synergies, motor primitives, compositionality, basic action concepts, and related work in machine learning have contributed to advance, at different levels, our understanding of the modular architecture underlying rich motor behaviors. However, the existence and nature of the modules in the control architecture is far from settled. For instance, regularity and low-dimensionality in the motor output are often taken as an indication of modularity but could they simply be a byproduct of optimization and task constraints? Moreover, what are the relationships between modules at different levels, such as muscle synergies, kinematic invariants, and basic action concepts? One important reason for the new interest in understanding modularity in motor control from different viewpoints is the impressive development in cognitive robotics. In comparison to animals and humans, the motor skills of today’s best robots are limited and inflexible. However, robot technology is maturing to the point at which it can start approximating a reasonable spectrum of isolated perceptual, cognitive, and motor capabilities. These advances allow researchers to explore how these motor, sensory and cognitive functions might be integrated into meaningful architectures and to test their functional limits. Such systems provide a new test bed to explore different concepts of modularity and to address the interaction between motor and cognitive processes experimentally. Thus, the goal of this Research Topic is to review, compare, and debate theoretical and experimental investigations of the modular organization of the motor control system at different levels. By bringing together researchers seeking to understand the building blocks for coordinating many muscles, for planning endpoint and joint trajectories, and for representing motor and behavioral actions in memory we aim at promoting new interactions between often disconnected research areas and approaches and at providing a broad perspective on the idea of modularity in motor control. We welcome original research, methodological, theoretical, review, and perspective contributions from behavioral, system, and computational motor neuroscience research, cognitive psychology, and cognitive robotics.