EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis

Download or read book Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis written by Patricia Melin and published by Springer Nature. This book was released on 2020-10-27 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on the use of intelligent techniques, such as fuzzy logic, neural networks and bio-inspired algorithms, and their application in medical diagnosis. The main idea is that the proposed method may be able to adapt to medical diagnosis problems in different possible areas of the medicine and help to have an improvement in diagnosis accuracy considering a clinical monitoring of 24 hours or more of the patient. In this book, tests were made with different architectures proposed in the different modules of the proposed model. First, it was possible to obtain the architecture of the fuzzy classifiers for the level of blood pressure and for the pressure load, and these were optimized with the different bio-inspired algorithms (Genetic Algorithm and Chicken Swarm Optimization). Secondly, we tested with a local database of 300 patients and good results were obtained. It is worth mentioning that this book is an important part of the proposed general model; for this reason, we consider that these modules have a good performance in a particular way, but it is advisable to perform more tests once the general model is completed.

Book New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension

Download or read book New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension written by Patricia Melin and published by Springer. This book was released on 2017-07-04 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic. Finally, two genetic algo-rithms are used to perform the optimization of the modular neural networks parameters and fuzzy inference system parameters. The experimental results obtained using the proposed method on real pa-tient data show that when the optimization is used, the results can be better than without optimization. This book is intended to be a refer-ence for scientists and physicians interested in applying soft compu-ting techniques, such as neural networks, fuzzy logic and genetic algorithms, in medical diagnosis, but also in general to classification and pattern recognition and similar problems.

Book Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Download or read book Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning written by Rani, Geeta and published by IGI Global. This book was released on 2020-10-16 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.

Book Advanced Classification Techniques for Healthcare Analysis

Download or read book Advanced Classification Techniques for Healthcare Analysis written by Chakraborty, Chinmay and published by IGI Global. This book was released on 2019-02-22 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.

Book Intelligent Multidimensional Data Clustering and Analysis

Download or read book Intelligent Multidimensional Data Clustering and Analysis written by Bhattacharyya, Siddhartha and published by IGI Global. This book was released on 2016-11-29 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining analysis techniques have undergone significant developments in recent years. This has led to improved uses throughout numerous functions and applications. Intelligent Multidimensional Data Clustering and Analysis is an authoritative reference source for the latest scholarly research on the advantages and challenges presented by the use of cluster analysis techniques. Highlighting theoretical foundations, computing paradigms, and real-world applications, this book is ideally designed for researchers, practitioners, upper-level students, and professionals interested in the latest developments in cluster analysis for large data sets.

Book Accuracy of rule extraction using a recursive rule extraction algorithm with continuous attributes combined with a sampling selection technique for the diagnosis of liver disease

Download or read book Accuracy of rule extraction using a recursive rule extraction algorithm with continuous attributes combined with a sampling selection technique for the diagnosis of liver disease written by Yoichi Hayashi and published by Infinite Study. This book was released on with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although liver cancer is the second most common cause of death from cancer worldwide, because of the limited accuracy and interpretability of extracted classification rules, the diagnosis of liver disease remains difficult. In addition, hepatitis, which is inflammation of the liver, can progress to fibrosis, cirrhosis, or even liver cancer.

Book Intuitionistic and Type 2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms  Theory and Applications

Download or read book Intuitionistic and Type 2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms Theory and Applications written by Oscar Castillo and published by Springer Nature. This book was released on 2020-02-27 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest advances in fuzzy logic, neural networks, and optimization algorithms, as well as their hybrid intelligent combinations, and their applications in the areas such as intelligent control, robotics, pattern recognition, medical diagnosis, time series prediction, and optimization. The topic is highly relevant as most current intelligent systems and devices use some form of intelligent feature to enhance their performance. The book also presents new and advanced models and algorithms of type-2 fuzzy logic and intuitionistic fuzzy systems, which are of great interest to researchers in these areas. Further, it proposes novel, nature-inspired optimization algorithms and innovative neural models. Featuring contributions on theoretical aspects as well as applications, the book appeals to a wide audience.

Book Study of Early Prediction and Classification of Arthritis Disease using Soft Computing Techniques

Download or read book Study of Early Prediction and Classification of Arthritis Disease using Soft Computing Techniques written by S. Shanmugam and published by Infinite Study. This book was released on with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arthritis is the most familiar element of disability in the World. At a rate of 20 million people in the US are suffering from Arthritis. It characterizes around 200 rheumatic diseases and conditions that influence joints. The tissues surround the joint, and other connective tissue.

Book Transfer Learning

    Book Details:
  • Author : Qiang Yang
  • Publisher : Cambridge University Press
  • Release : 2020-02-13
  • ISBN : 1108860087
  • Pages : 394 pages

Download or read book Transfer Learning written by Qiang Yang and published by Cambridge University Press. This book was released on 2020-02-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Book Fuzzy Systems  Concepts  Methodologies  Tools  and Applications

Download or read book Fuzzy Systems Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2017-02-22 with total page 1795 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a myriad of mathematical problems that cannot be solved using traditional methods. The development of fuzzy expert systems has provided new opportunities for problem-solving amidst uncertainties. Fuzzy Systems: Concepts, Methodologies, Tools, and Applications is a comprehensive reference source on the latest scholarly research and developments in fuzzy rule-based methods and examines both theoretical foundations and real-world utilization of these logic sets. Featuring a range of extensive coverage across innovative topics, such as fuzzy logic, rule-based systems, and fuzzy analysis, this is an essential publication for scientists, doctors, engineers, physicians, and researchers interested in emerging perspectives and uses of fuzzy systems in various sectors.

Book Bio inspired Neurocomputing

Download or read book Bio inspired Neurocomputing written by Akash Kumar Bhoi and published by Springer Nature. This book was released on 2020-07-21 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the latest technological advances in neuro-computational intelligence in biological processes where the primary focus is on biologically inspired neuro-computational techniques. The theoretical and practical aspects of biomedical neural computing, brain-inspired computing, bio-computational models, artificial intelligence (AI) and machine learning (ML) approaches in biomedical data analytics are covered along with their qualitative and quantitative features. The contents cover numerous computational applications, methodologies and emerging challenges in the field of bio-soft computing and bio-signal processing. The authors have taken meticulous care in describing the fundamental concepts, identifying the research gap and highlighting the problems with the strategical computational approaches to address the ongoing challenges in bio-inspired models and algorithms. Given the range of topics covered, this book can be a valuable resource for students, researchers as well as practitioners interested in the rapidly evolving field of neurocomputing and biomedical data analytics.

Book Distributed Computing and Artificial Intelligence

Download or read book Distributed Computing and Artificial Intelligence written by Sigeru Omatu and published by Springer Science & Business Media. This book was released on 2013-06-25 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry sector is essential to facilitate the development of systems that can meet the ever increasing demands of today's society. This edition of DCAI brings together past experience, current work, and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the Bioinformatics, Intelligent System and Educational Technology Research Group (http://bisite.usal.es/) of the University of Salamanca. The present edition was held in Salamanca, Spain, from 22nd to 24th May 2013.

Book Deep Learning for Biomedical Data Analysis

Download or read book Deep Learning for Biomedical Data Analysis written by Mourad Elloumi and published by Springer Nature. This book was released on 2021-07-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first overview on Deep Learning (DL) for biomedical data analysis. It surveys the most recent techniques and approaches in this field, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on these techniques, approaches and the related problems without overcrowding the reader's head. It presents the results of the latest investigations in the field of DL for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine fundamental theory of Artificial Intelligence (AI), Machine Learning (ML) and DL with practical applications in Biology and Medicine. Certainly, the list of topics covered in this book is not exhaustive but these topics will shed light on the implications of the presented techniques and approaches on other topics in biomedical data analysis. The book finds a balance between theoretical and practical coverage of a wide range of issues in the field of biomedical data analysis, thanks to DL. The few published books on DL for biomedical data analysis either focus on specific topics or lack technical depth. The chapters presented in this book were selected for quality and relevance. The book also presents experiments that provide qualitative and quantitative overviews in the field of biomedical data analysis. The reader will require some familiarity with AI, ML and DL and will learn about techniques and approaches that deal with the most important and/or the newest topics encountered in the field of DL for biomedical data analysis. He/she will discover both the fundamentals behind DL techniques and approaches, and their applications on biomedical data. This book can also serve as a reference book for graduate courses in Bioinformatics, AI, ML and DL. The book aims not only at professional researchers and practitioners but also graduate students, senior undergraduate students and young researchers. This book will certainly show the way to new techniques and approaches to make new discoveries.

Book Nature inspired Optimization of Type 2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis

Download or read book Nature inspired Optimization of Type 2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis written by Patricia Melin and published by Springer Nature. This book was released on 2021-08-06 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the utilization of different soft computing techniques and their optimization for providing an accurate and efficient medical diagnosis. The proposed method provides a precise and timely diagnosis of the risk that a person has to develop a particular disease, but it can be adaptable to provide the diagnosis of different diseases. This book reflects the experimentation that was carried out, based on the different optimizations using bio-inspired algorithms (such as bird swarm algorithm, flower pollination algorithms, and others). In particular, the optimizations were carried out to design the fuzzy classifiers of the nocturnal blood pressure profile and heart rate level. In addition, to obtain the architecture that provides the best result, the neurons and the number of neurons per layers of the artificial neural networks used in the model are optimized. Furthermore, different tests were carried out with the complete optimized model. Another work that is presented in this book is the dynamic parameter adaptation of the bird swarm algorithm using fuzzy inference systems, with the aim of improving its performance. For this, different experiments are carried out, where mathematical functions and a monolithic neural network are optimized to compare the results obtained with the original algorithm. The book will be of interest for graduate students of engineering and medicine, as well as researchers and professors aiming at proposing and developing new intelligent models for medical diagnosis. In addition, it also will be of interest for people working on metaheuristic algorithms and their applications on medicine.

Book Advances in Computer and Computational Sciences

Download or read book Advances in Computer and Computational Sciences written by Sanjiv K. Bhatia and published by Springer. This book was released on 2017-05-25 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and soft computing, security and many more. This book helps the perspective readers’ from computer industry and academia to derive the advances of next generation computer and communication technology and shape them into real life applications.

Book Computer Vision and Robotics

Download or read book Computer Vision and Robotics written by Jagdish Chand Bansal and published by Springer Nature. This book was released on 2022-03-14 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of a collection of the high-quality research articles in the field of computer vision and robotics which are presented in the International Conference on Computer Vision and Robotics (CVR 2021), organized by BBD University Lucknow, India, during 7–8 August 2021. The book discusses applications of computer vision and robotics in the fields like medical science, defence, and smart city planning. The book presents recent works from researchers, academicians, industry, and policy makers.

Book Nature Inspired Methods for Smart Healthcare Systems and Medical Data

Download or read book Nature Inspired Methods for Smart Healthcare Systems and Medical Data written by Ahmed M. Anter and published by Springer Nature. This book was released on 2024-01-02 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to gather high-quality research papers on developing theories, frameworks, architectures, and algorithms for solving complex challenges in smart healthcare applications for real industry use. It explores the recent theoretical and practical applications of metaheuristics and optimization in various smart healthcare contexts. The book also discusses the capability of optimization techniques to obtain optimal parameters in ML and DL technologies. It provides an open platform for academics and engineers to share their unique ideas and investigate the potential convergence of existing systems and advanced metaheuristic algorithms. The book's outcome will enable decision-makers and practitioners to select suitable optimization approaches for scheduling patients in crowded environments with minimized human errors. The healthcare system aims to improve the lives of disabled, elderly, sick individuals, and children. IoT-based systems simplify decision-making and task automation, offering an automated foundation. Nature-inspired metaheuristics and mining algorithms are crucial for healthcare applications, reducing costs, increasing efficiency, enabling accurate data analysis, and enhancing patient care. Metaheuristics improve algorithm performance and address challenges in data mining and ML, making them essential in healthcare research. Real-time IoT-based healthcare systems can be modeled using an IoT-based metaheuristic approach to generate optimal solutions. Metaheuristics are powerful technologies for optimization problems in healthcare systems. They balance exact methods, which guarantee optimal solutions but require significant computational resources, with fast but low-quality greedy methods. Metaheuristic algorithms find better solutions while minimizing computational time. The scientific community is increasingly interested in metaheuristics, incorporating techniques from AI, operations research, and soft computing. New metaheuristics offer efficient ways to address optimization problems and tackle unsolved challenges. They can be parameterized to control performance and adjust the trade-off between solution quality and resource utilization. Metaheuristics manage the trade-off between performance and solution quality, making them highly applicable to real-time applications with pragmatic objectives.