EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Network Design

Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Neural Network Design

Download or read book Neural Network Design written by Martin T. Hagan and published by Martin Hagan. This book was released on 2002-01-01 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear and detailed survey of basic neural network architectures and learning rules. In it, the authors emphasize mathematical analysis of networks, methods for training networks, and application of networks to practical engineering problems in pattern recognition, signal processing, and control systems.

Book Neural Network Design

Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear and detailed survey of basic neural network architectures and learning rules. In it, the authors emphasize mathematical analysis of networks, methods for training networks, and appication of networks to practical engineering problems in pattern recognition, signal processing, and control systems.

Book Neural Networks and Deep Learning

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Book Introduction to Neural Networks with Java

Download or read book Introduction to Neural Networks with Java written by Jeff Heaton and published by Heaton Research Incorporated. This book was released on 2005 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to showing the programmer how to construct Neural Networks, the book discusses the Java Object Oriented Neural Engine (JOONE), a free open source Java neural engine. (Computers)

Book Principles Of Artificial Neural Networks  2nd Edition

Download or read book Principles Of Artificial Neural Networks 2nd Edition written by Daniel Graupe and published by World Scientific. This book was released on 2007-04-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strengths and weaknesses of the different networks.

Book Deep Learning

    Book Details:
  • Author : Ian Goodfellow
  • Publisher : MIT Press
  • Release : 2016-11-10
  • ISBN : 0262337371
  • Pages : 801 pages

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Book Neural Networks

    Book Details:
  • Author : Raul Rojas
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 3642610684
  • Pages : 511 pages

Download or read book Neural Networks written by Raul Rojas and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

Book An Introduction to Neural Networks

Download or read book An Introduction to Neural Networks written by Kevin Gurney and published by CRC Press. This book was released on 2018-10-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Book Make Your Own Neural Network  An In Depth Visual Introduction for Beginners

Download or read book Make Your Own Neural Network An In Depth Visual Introduction for Beginners written by Michael Taylor and published by Independently Published. This book was released on 2017-10-04 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow. What you will gain from this book: * A deep understanding of how a Neural Network works. * How to build a Neural Network from scratch using Python. Who this book is for: * Beginners who want to fully understand how networks work, and learn to build two step-by-step examples in Python. * Programmers who need an easy to read, but solid refresher, on the math of neural networks. What's Inside - 'Make Your Own Neural Network: An Indepth Visual Introduction For Beginners' What Is a Neural Network? Neural networks have made a gigantic comeback in the last few decades and you likely make use of them everyday without realizing it, but what exactly is a neural network? What is it used for and how does it fit within the broader arena of machine learning? we gently explore these topics so that we can be prepared to dive deep further on. To start, we'll begin with a high-level overview of machine learning and then drill down into the specifics of a neural network. The Math of Neural Networks On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. * Forward Propagation * Calculating The Total Error * Calculating The Gradients * Updating The Weights Make Your Own Artificial Neural Network: Hands on Example You will learn to build a simple neural network using all the concepts and functions we learned in the previous few chapters. Our example will be basic but hopefully very intuitive. Many examples available online are either hopelessly abstract or make use of the same data sets, which can be repetitive. Our goal is to be crystal clear and engaging, but with a touch of fun and uniqueness. This section contains the following eight chapters. Building Neural Networks in Python There are many ways to build a neural network and lots of tools to get the job done. This is fantastic, but it can also be overwhelming when you start, because there are so many tools to choose from. We are going to take a look at what tools are needed and help you nail down the essentials. To build a neural network Tensorflow and Neural Networks There is no single way to build a feedforward neural network with Python, and that is especially true if you throw Tensorflow into the mix. However, there is a general framework that exists that can be divided into five steps and grouped into two parts. We are going to briefly explore these five steps so that we are prepared to use them to build a network later on. Ready? Let's begin. Neural Network: Distinguish Handwriting We are going to dig deep with Tensorflow and build a neural network that can distinguish between handwritten numbers. We'll use the same 5 steps we covered in the high-level overview, and we are going to take time exploring each line of code. Neural Network: Classify Images 10 minutes. That's all it takes to build an image classifier thanks to Google! We will provide a high-level overview of how to classify images using a convolutional neural network (CNN) and Google's Inception V3 model. Once finished, you will be able to tweak this code to classify any type of image sets! Cats, bats, super heroes - the sky's the limit.

Book Neural Network Methods in Natural Language Processing

Download or read book Neural Network Methods in Natural Language Processing written by Yoav Goldberg and published by Morgan & Claypool Publishers. This book was released on 2017-04-17 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Book Programming Quantum Computers

Download or read book Programming Quantum Computers written by Eric R. Johnston and published by O'Reilly Media. This book was released on 2019-07-03 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.

Book Programming Neural Networks with Encog 2 in Java

Download or read book Programming Neural Networks with Encog 2 in Java written by Jeff Heaton and published by . This book was released on 2009-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encog is an advanced neural network and bot programming framework. This book focuses on using Encog to create a variety of neural network architectures using the Java programming language. Neural network architectures such as feedforward/perceptrons, Hopfield, Elman, Jordan, Radial Basis Function, and Self Organizing maps are all demonstrated. This book also shows how to use Encog to train neural networks using a variety of means. Several propagation techniques, such as back propagation, resilient propagation (RPROP) and the Manhattan update rule are discussed. Additionally, training with a genetic algorithm and simulated annealing is discussed as well. You will also see how to enhance training using techniques such as pruning, hybrid training, Real world examples tie the book together. Pattern recognition applications such as OCR, image and text recognition will be introduced. You will see how to apply time series and forecasting and how to financial markets. All of the Encog neural network components will be demonstrated to show how to use them in your own neural network applications.

Book Generative Deep Learning

Download or read book Generative Deep Learning written by David Foster and published by "O'Reilly Media, Inc.". This book was released on 2019-06-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

Book Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Book Fundamentals of Deep Learning

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Book Interpretable Machine Learning

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.