Download or read book Neural Fuzzy Control Systems with Structure and Parameter Learning written by C. T. Lin and published by World Scientific. This book was released on 1994 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.
Download or read book Neural Fuzzy Control Systems With Structure And Parameter Learning written by Chin-teng Lin and published by World Scientific Publishing Company. This book was released on 1994-02-08 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.
Download or read book Neural Fuzzy Systems written by Ching Tai Lin and published by Prentice Hall. This book was released on 1996 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Download or read book Methods and Applications of Intelligent Control written by S.G. Tzafestas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.
Download or read book Analysis and Synthesis of Fuzzy Control Systems written by Gang Feng and published by CRC Press. This book was released on 2018-09-03 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.
Download or read book Neuro Fuzzy Architectures and Hybrid Learning written by Danuta Rutkowska and published by Physica. This book was released on 2012-11-13 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the computer age has set in motion a profound shift in our perception of science -its structure, its aims and its evolution. Traditionally, the principal domains of science were, and are, considered to be mathe matics, physics, chemistry, biology, astronomy and related disciplines. But today, and to an increasing extent, scientific progress is being driven by a quest for machine intelligence - for systems which possess a high MIQ (Machine IQ) and can perform a wide variety of physical and mental tasks with minimal human intervention. The role model for intelligent systems is the human mind. The influ ence of the human mind as a role model is clearly visible in the methodolo gies which have emerged, mainly during the past two decades, for the con ception, design and utilization of intelligent systems. At the center of these methodologies are fuzzy logic (FL); neurocomputing (NC); evolutionary computing (EC); probabilistic computing (PC); chaotic computing (CC); and machine learning (ML). Collectively, these methodologies constitute what is called soft computing (SC). In this perspective, soft computing is basically a coalition of methodologies which collectively provide a body of concepts and techniques for automation of reasoning and decision-making in an environment of imprecision, uncertainty and partial truth.
Download or read book System Identification and Adaptive Control written by Yiannis Boutalis and published by Springer Science & Business. This book was released on 2014-04-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Download or read book Fuzzy Systems written by Hung T. Nguyen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.
Download or read book Soft Computing in Human Related Sciences written by Horia-Nicolai L Teodorescu and published by CRC Press. This book was released on 1999-04-29 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hard boundaries have traditionally existed between such fields as fuzzy systems, neural networks, genetic algorithms, chaotic systems and expert systems. Gradually those boundaries are tending to vanish and "soft computing"-based systems that mix these different approaches have begun to emerge. Soft Computing Techniques in Human-Related Sciences focuses on the use of novel techniques such as artificial neural networks, fuzzy logic and genetic algorithms to solve practical problems related to humans: their activities, health and social needs. This volume illustrates and presents in an organized manner some of the recent progress in the applications of soft computing to fields related to social science, medical science, psychology, psychiatry , management of health and community services, and humanoid robots. Soft Computing Techniques in Human-Related Sciences begins with an introductory chapter to aid newcomers with the basic concepts, and progresses to the methodology of the use of soft computing in robotics, prosthetics, medicine, psycchology and man-machine interaction.
Download or read book Flexible Neuro Fuzzy Systems written by Leszek Rutkowski and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible Neuro-Fuzzy Systems is the first professional literature about the new class of powerful, flexible fuzzy systems. The author incorporates various flexibility parameters to the construction of neuro-fuzzy systems. This approach dramatically improves their performance, allowing the systems to perfectly represent the pattern encoded in data. Flexible Neuro-Fuzzy Systems is the only book that proposes a flexible approach to fuzzy modeling and fills the gap in existing literature. This book introduces new fuzzy systems which outperform previous approaches to system modeling and classification, and has the following features: -Provides a framework for unification, construction and development of neuro-fuzzy systems; -Presents complete algorithms in a systematic and structured fashion, facilitating understanding and implementation, -Covers not only advanced topics but also fundamentals of fuzzy sets, -Includes problems and exercises following each chapter, -Illustrates the results on a wide variety of simulations, -Provides tools for possible applications in business and economics, medicine and bioengineering, automatic control, robotics and civil engineering.
Download or read book Expert Systems written by Cornelius T. Leondes and published by Elsevier. This book was released on 2001-09-26 with total page 2125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis
Download or read book Intelligent Control written by Nazmul Siddique and published by Springer. This book was released on 2013-11-29 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller. The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. Intelligent Control will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control.
Download or read book Energy Information Feedback Adaptation and Self organization written by Spyros G Tzafestas and published by Springer. This book was released on 2018-01-03 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book offers a comprehensive and integrated introduction to the five fundamental elements of life and society: energy, information, feedback, adaptation, and self-organization. It is divided into two parts. Part I is concerned with energy (definition, history, energy types, energy sources, environmental impact); thermodynamics (laws, entropy definitions, energy, branches of thermodynamics, entropy interpretations, arrow of time); information (communication and transmission, modulation–demodulation, coding–decoding, information theory, information technology, information science, information systems); feedback control (history, classical methodologies, modern methodologies); adaptation (definition, mechanisms, measurement, complex adaptive systems, complexity, emergence); and self-organization (definitions/opinions, self-organized criticality, cybernetics, self-organization in complex adaptive systems, examples in nature). In turn, Part II studies the roles, impacts, and applications of the five above-mentioned elements in life and society, namely energy (biochemical energy pathways, energy flows through food chains, evolution of energy resources, energy and economy); information (information in biology, biocomputation, information technology in office automation, power generation/distribution, manufacturing, business, transportation), feedback (temperature, water, sugar and hydrogen ion regulation, autocatalysis, biological modeling, control of hard/technological and soft/managerial systems), adaptation and self-organization (ecosystems, climate change, stock market, knowledge management, man-made self-organized controllers, traffic lights control).
Download or read book Chaotic Systems written by Christos H. Skiadas and published by World Scientific. This book was released on 2010 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers suggested by the Scientific Committee that includes the best papers presented in the 2nd International Conference (CHAOS2009) on Chaotic Modeling, Simulation and Applications, that was held in Chania, Crete, Greece, June 15, 2009. The aim of the conference was to invite and bring together people working in interesting topics of chaotic modeling, nonlinear and dynamical systems and chaotic simulation. The volume presents theoretical and applied contributions on chaotic systems. Papers from several nonlinear analysis and chaotic fields are included and new and very important results are presented. Emphasis was given to the selection of works that have significant impact in the chaotic field and open new horizons to further develop related topics and subjects. Even more the selected papers are addressed to an interdisciplinary audience aiming at the broad dissemination of the theory and practice of chaotic modeling and simulation and nonlinear science.
Download or read book Chaotic Systems Theory And Applications Selected Papers From The 2nd Chaotic Modeling And Simulation International Conference Chaos2009 written by Christos H Skiadas and published by World Scientific. This book was released on 2010-01-13 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers suggested by the Scientific Committee that includes the best papers presented in the 2nd International Conference (CHAOS2009) on Chaotic Modeling, Simulation and Applications, that was held in Chania, Crete, Greece, June 1-5, 2009. The aim of the conference was to invite and bring together people working in interesting topics of chaotic modeling, nonlinear and dynamical systems and chaotic simulation.The volume presents theoretical and applied contributions on chaotic systems. Papers from several nonlinear analysis and chaotic fields are included and new and very important results are presented. Emphasis was given to the selection of works that have significant impact in the chaotic field and open new horizons to further develop related topics and subjects. Even more the selected papers are addressed to an interdisciplinary audience aiming at the broad dissemination of the theory and practice of chaotic modeling and simulation and nonlinear science.
Download or read book Neuro fuzzy Controllers written by Jelena Godjevac and published by EPFL Press. This book was released on 1997-01-01 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fuzzy Logic and its Applications to Engineering Information Sciences and Intelligent Systems written by Zeungnam Bien and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy technology has emerged as one of the most exciting new concepts available. Fuzzy Logic and its Applications... covers a wide range of the theory and applications of fuzzy logic and related systems, including industrial applications of fuzzy technology, implementing human intelligence in machines and systems. There are four main themes: intelligent systems, engineering, mathematical foundations, and information sciences. Both academics and the technical community will learn how and why fuzzy logic is appreciated in the conceptual, design and manufacturing stages of intelligent systems, gaining an improved understanding of the basic science and the foundations of human reasoning.