EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscaled Semiconductor on Insulator Structures and Devices

Download or read book Nanoscaled Semiconductor on Insulator Structures and Devices written by S. Hall and published by Springer Science & Business Media. This book was released on 2007-07-09 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers combined views on silicon-on-insulator (SOI) nanoscaled electronics from experts in the fields of materials science, device physics, electrical characterization and computer simulation. Coverage analyzes prospects of SOI nanoelectronics beyond Moore’s law and explains fundamental limits for CMOS, SOICMOS and single electron technologies.

Book Nanoscaled Semiconductor on Insulator Materials  Sensors and Devices

Download or read book Nanoscaled Semiconductor on Insulator Materials Sensors and Devices written by Alexei N. Nazarov and published by Trans Tech Publications Ltd. This book was released on 2011-07-04 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special collection covers: 1. the technology of semiconductor-on-insulator structures and devices; 2. the physics of new SOI devices; 3. SOI sensors and MEMS; 4. nanodots, nanowires and nanofilms. The first part covers a wide variety of SemOI-based structures such as ZnO-on-Insulators, a-SiC-on-Si oxide, graphite inner films fabricated by ion implantation, and others. The second part presents new devices based upon impact ionization near to the source junction, the modeling of charge transport in nano-scale SOI MOSFETs, the electrical properties of SOI MOSFETs with LaLuO3 high-k gate dielectric and the study of neutron effects upon the behavior of nanometer-scale SOI devices. The third part considers various types of SOI sensors and MEMS, together with their characteristics and applications. The fourth part describes the fabrication and properties of quantum-dimensional structures such as nanowires and nanodots. This book will therefore be useful to a wide readership. Volume is indexed by Thomson Reuters CPCI-S (WoS).

Book Nanoscale Silicon Devices

Download or read book Nanoscale Silicon Devices written by Shunri Oda and published by CRC Press. This book was released on 2018-09-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is Bigger Always Better? Explore the Behavior of Very Small Devices as Described by Quantum Mechanics Smaller is better when it comes to the semiconductor transistor. Nanoscale Silicon Devices examines the growth of semiconductor device miniaturization and related advances in material, device, circuit, and system design, and highlights the use of device scaling within the semiconductor industry. Device scaling, the practice of continuously scaling down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs), has significantly improved the performance of small computers, mobile phones, and similar devices. The practice has resulted in smaller delay time and higher device density in a chip without an increase in power consumption. This book covers recent advancements and considers the future prospects of nanoscale silicon (Si) devices. It provides an introduction to new concepts (including variability in scaled MOSFETs, thermal effects, spintronics-based nonvolatile computing systems, spin-based qubits, magnetoelectric devices, NEMS devices, tunnel FETs, dopant engineering, and single-electron transfer), new materials (such as high-k dielectrics and germanium), and new device structures in three dimensions. It covers the fundamentals of such devices, describes the physics and modeling of these devices, and advocates further device scaling and minimization of energy consumption in future large-scale integrated circuits (VLSI). Additional coverage includes: Physics of nm scaled devices in terms of quantum mechanics Advanced 3D transistors: tri-gate structure and thermal effects Variability in scaled MOSFET Spintronics on Si platform NEMS devices for switching, memory, and sensor applications The concept of ballistic transport The present status of the transistor variability and more An indispensable resource, Nanoscale Silicon Devices serves device engineers and academic researchers (including graduate students) in the fields of electron devices, solid-state physics, and nanotechnology.

Book FinFETs and Other Multi Gate Transistors

Download or read book FinFETs and Other Multi Gate Transistors written by J.-P. Colinge and published by Springer Science & Business Media. This book was released on 2008 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.

Book Nanoscale Semiconductors

Download or read book Nanoscale Semiconductors written by Balwinder Raj and published by CRC Press. This book was released on 2022-08-30 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.

Book Nanoscale CMOS

Download or read book Nanoscale CMOS written by Francis Balestra and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive review of the state-of-the-art in the development of new and innovative materials, and of advanced modeling and characterization methods for nanoscale CMOS devices. Leading global industry bodies including the International Technology Roadmap for Semiconductors (ITRS) have created a forecast of performance improvements that will be delivered in the foreseeable future – in the form of a roadmap that will lead to a substantial enlargement in the number of materials, technologies and device architectures used in CMOS devices. This book addresses the field of materials development, which has been the subject of a major research drive aimed at finding new ways to enhance the performance of semiconductor technologies. It covers three areas that will each have a dramatic impact on the development of future CMOS devices: global and local strained and alternative materials for high speed channels on bulk substrate and insulator; very low access resistance; and various high dielectric constant gate stacks for power scaling. The book also provides information on the most appropriate modeling and simulation methods for electrical properties of advanced MOSFETs, including ballistic transport, gate leakage, atomistic simulation, and compact models for single and multi-gate devices, nanowire and carbon-based FETs. Finally, the book presents an in-depth investigation of the main nanocharacterization techniques that can be used for an accurate determination of transport parameters, interface defects, channel strain as well as RF properties, including capacitance-conductance, improved split C-V, magnetoresistance, charge pumping, low frequency noise, and Raman spectroscopy.

Book Stress and Strain Engineering at Nanoscale in Semiconductor Devices

Download or read book Stress and Strain Engineering at Nanoscale in Semiconductor Devices written by Chinmay K. Maiti and published by CRC Press. This book was released on 2021-06-29 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.

Book Science and Technology of Semiconductor On Insulator Structures and Devices Operating in a Harsh Environment

Download or read book Science and Technology of Semiconductor On Insulator Structures and Devices Operating in a Harsh Environment written by Denis Flandre and published by Springer Science & Business Media. This book was released on 2006-05-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume archives the contributions of the speakers who attended the NATO Advanced Research Workshop on “Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment” held at the Sanatorium Puscha Ozerna, th th Kyiv, Ukraine, from 25 to 29 April 2004. The semiconductor industry has maintained a very rapid growth during the last three decades through impressive technological achievements which have resulted in products with higher performance and lower cost per function. After many years of development semiconductor-on-insulator materials have entered volume production and will increasingly be used by the manufacturing industry. The wider use of semiconductor (especially silicon) on insulator materials will not only enable the benefits of these materials to be further demonstrated but, also, will drive down the cost of substrates which, in turn, will stimulate the development of other novel devices and applications. In itself this trend will encourage the promotion of the skills and ideas generated by researchers in the Former Soviet Union and Eastern Europe and their incorporation in future collaborations.

Book High Mobility and Quantum Well Transistors

Download or read book High Mobility and Quantum Well Transistors written by Geert Hellings and published by Springer Science & Business Media. This book was released on 2013-03-25 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Quantum Well pFET – is discussed. Electrical testing shows remarkable short-channel performance and prototypes are found to be competitive with a state-of-the-art planar strained-silicon technology. High mobility channels, providing high drive current, and heterostructure confinement, providing good short-channel control, make a promising combination for future technology nodes.

Book Microelectronics Technology and Devices   SBMicro 2009

Download or read book Microelectronics Technology and Devices SBMicro 2009 written by Davies William de Lima Monteiro and published by The Electrochemical Society. This book was released on 2009-08 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of ECS Transactions features eight invited and sixty-seven regular papers on technology, devices, systems, optoelectronics, modeling and characterization; all either directly or indirectly related to microelectronics. The topics presented herein reveal the multidisciplinary character of this field, which definitely incites the highly cooperative trace of human nature.

Book Noise in Nanoscale Semiconductor Devices

Download or read book Noise in Nanoscale Semiconductor Devices written by Tibor Grasser and published by Springer Nature. This book was released on 2020-04-26 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.

Book Advanced Nanoscale MOSFET Architectures

Download or read book Advanced Nanoscale MOSFET Architectures written by Kalyan Biswas and published by John Wiley & Sons. This book was released on 2024-07-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.

Book Nanoscale Devices

    Book Details:
  • Author : Brajesh Kumar Kaushik
  • Publisher : CRC Press
  • Release : 2018-11-16
  • ISBN : 1351670212
  • Pages : 410 pages

Download or read book Nanoscale Devices written by Brajesh Kumar Kaushik and published by CRC Press. This book was released on 2018-11-16 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this book is to discuss various aspects of nanoscale device design and their applications including transport mechanism, modeling, and circuit applications. . Provides a platform for modeling and analysis of state-of-the-art devices in nanoscale regime, reviews issues related to optimizing the sub-nanometer device performance and addresses simulation aspect and/or fabrication process of devices Also, includes design problems at the end of each chapter

Book Nanoscale Transistors

Download or read book Nanoscale Transistors written by Mark Lundstrom and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Book Nanoscale Devices  Materials  and Biological Systems

Download or read book Nanoscale Devices Materials and Biological Systems written by M. Cahay and published by . This book was released on 2005 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Nanoscaled Field Effect Transistors

Download or read book Fundamentals of Nanoscaled Field Effect Transistors written by Amit Chaudhry and published by Springer Science & Business Media. This book was released on 2013-04-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book.

Book Semiconductor On Insulator Materials for Nanoelectronics Applications

Download or read book Semiconductor On Insulator Materials for Nanoelectronics Applications written by Alexei Nazarov and published by Springer Science & Business Media. This book was released on 2011-03-03 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Semiconductor-On-Insulator Materials for NanoElectronics Applications” is devoted to the fast evolving field of modern nanoelectronics, and more particularly to the physics and technology of nanoelectronic devices built on semiconductor-on-insulator (SemOI) systems. The book contains the achievements in this field from leading companies and universities in Europe, USA, Brazil and Russia. It is articulated around four main topics: 1. New semiconductor-on-insulator materials; 2. Physics of modern SemOI devices; 3. Advanced characterization of SemOI devices; 4. Sensors and MEMS on SOI. "Semiconductor-On-Insulator Materials for NanoElectonics Applications” is useful not only to specialists in nano- and microelectronics but also to students and to the wider audience of readers who are interested in new directions in modern electronics and optoelectronics.