EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nanoscale Morphology of Organic Solar Cells

Download or read book Nanoscale Morphology of Organic Solar Cells written by 林志誠 and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351831216
  • Pages : 510 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Liming Ding and published by John Wiley & Sons. This book was released on 2022-02-09 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.

Book Nanoscale Engineering of Thin Film Morphology for Efficient Organic Photovoltaic Cells

Download or read book Nanoscale Engineering of Thin Film Morphology for Efficient Organic Photovoltaic Cells written by Richa Pandey and published by . This book was released on 2012 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Solar Cells

    Book Details:
  • Author : Barry P. Rand
  • Publisher : CRC Press
  • Release : 2014-08-26
  • ISBN : 9814463663
  • Pages : 795 pages

Download or read book Organic Solar Cells written by Barry P. Rand and published by CRC Press. This book was released on 2014-08-26 with total page 795 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as elect

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wolfgang Tress and published by Springer. This book was released on 2014-11-22 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author’s dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.

Book Correlating structure and function in small molecule organic solar cells by means of scanning probe and electron microscopy

Download or read book Correlating structure and function in small molecule organic solar cells by means of scanning probe and electron microscopy written by Michael Scherer and published by BoD – Books on Demand. This book was released on 2016-07-20 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work nanoscale properties in active layers of small molecule organic solar cells are studied regarding their impact on device performance. For this, the effect of variations in stack design and process conditions is examined both electrically and with high resolution imaging techniques. Two topics are addressed: (i) the visualization of charge extraction/injection properties of solar cell contacts and (ii) the tailoring of structural properties of co-evaporated material blends for bulk heterojunction (BHJ) organic solar cells. (i) We study the impact of controlled contact manipulation on the internal electric potential distribution of fluorinated zincphtalocyanine (F4ZnPc)/fullerene (C60) organic solar cells under operating conditions. In a detailed analytical study using photoelectron spectroscopy and in-operando scanning Kelvin probe microscopy it is demonstrated that the electric field distribution of organic solar cells at the maximum power point depends in an overproportional manner on contact properties and ranges from bulk to contact dominated even for solar cells with decent device performance. (ii) The morphology of co-evaporated active layer blends depends on both substrate and substrate temperature. Here we study the morphology of F4ZnPc:C60 blends with analytical transmission electron microscopy. For all substrates used is found that co-evaporation of the materials at elevated substrate temperature (100° Cel) induces a distinct phase segregation of F4ZnPc and C60. However, only when using a C60 underlayer, as in inverted devices, also the crystallinity of the segregated C60 phase increases. There is only a slight increase in crystallinity when F4ZnPc acts as an underlayer, as typically for non-inverted devices. Solar cell characterization reveals that the crystalline C60 domains are the main driving force for enhanced free charge carrier generation and higher power conversion efficiencies. With this we could provide a novel explanation why record efficiencies of small molecule organic solar cells are realized in inverted device architecture only.

Book Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

Download or read book Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells written by and published by . This book was released on 2016 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

Book Organic Solar Cells

    Book Details:
  • Author : Pankaj Kumar
  • Publisher : CRC Press
  • Release : 2016-10-03
  • ISBN : 1498723306
  • Pages : 338 pages

Download or read book Organic Solar Cells written by Pankaj Kumar and published by CRC Press. This book was released on 2016-10-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Book Solar Cells

Download or read book Solar Cells written by S. K. Sharma and published by Springer Nature. This book was released on 2020-01-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.

Book Multidimensional Solid State NMR and Polymers

Download or read book Multidimensional Solid State NMR and Polymers written by Klaus Schmidt-Rohr and published by Elsevier. This book was released on 2012-12-02 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations

Book Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based OnHyperbranched Semiconductor Nanocrystals

Download or read book Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based OnHyperbranched Semiconductor Nanocrystals written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

Book Exploring Nanoscale Properties of Organic Solar Cells

Download or read book Exploring Nanoscale Properties of Organic Solar Cells written by Tobias Mönch and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Polymer Solar Cells

    Book Details:
  • Author : Lilian Chang
  • Publisher :
  • Release : 2013
  • ISBN : 9781303152986
  • Pages : pages

Download or read book Polymer Solar Cells written by Lilian Chang and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have the potential to be unrivaled in terms of processing cost, speed, and simplicity. The simplest of such devices consists of a single bulk-heterojunction (BHJ) active layer, in which the electron donor (conjugated polymer) and electron acceptor (fullerene) are deposited from a common solvent. The performance of BHJ solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g. by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. An understanding of the role of residual solvent in the BHJ layer is imperative in order to develop strategies for morphology stabilization and preserve the longevity of the device. This work highlights the effect of residual solvents on acceptor, (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) diffusion and ultimately the stability of the morphology. We first show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation between poly(3-hexylthiophene) (P3HT) and PCBM. We then show that the addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the film and improves the fill factor of the BHJ device without further tempering. Other commonly used additives for morphology improvement were also investigated, i.e. 1,8-diiodooctane and 1-chloronaphthalene. We show that the choice of solvent additives has direct implications on morphological evolution, i.e. P3HT:PCBM BHJ films processed with a small amount of 1,8-diiodooctane or 1-chloronaphthalene have more crystalline PCBM domains compared to crystalline P3HT domains, while the opposite is true for films cast with nitrobenzene additive and films cast purely from chlorobenzene. The BHJ film cross-links when annealed at 300°C in the presence of 1,8-diiodooctane. Cross-linking is found to occur even in pristine P3HT and PCBM films annealed under similar conditions.Our work in understanding solvent interactions greatly facilitated our venture into multi-junction solution-processed devices. In our exploration of various device architectures for optimal performance, we have also established a way to modify the surface energy of a film to render it amenable to subsequent solution-processing. The tandem architecture offers a strategy to efficiently harvest photons from the full solar spectrum by stacking multiple photoactive layers with complementary absorption spectra. We found that the current predominant choices for solution-processed electron transport layer (ETL) each have their problems when implemented into a tandem device. Hence, we are presenting the novel use of stacked perovskite, (TBA,H)Ca2Nb3O10 (CNO), semiconductor nanosheets as an ETL and we have successfully demonstrated a completely solution-processed tandem polymer solar cell. While further optimization of the CNO-layer is still required, the robust CNO-layer can be spin-coated on top of the BHJ photoactive layer and is stable towards subsequent processing and heat-treatment. We also explored the feasibility of introducing silver nanoparticles into the device structure via a low-cost solution-processable route for the exploitation of surface plasmon resonance for near-field absorption enhancement in the photoactive layer. We find that the photo-reduction of Ag+ to Ag appears to be a promising route for in-situ deposition of Ag nanoparticles.

Book Understanding Morphology Evolution in Printed Organic Solar Cells

Download or read book Understanding Morphology Evolution in Printed Organic Solar Cells written by Kevin Li Gu and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer-based organic photovoltaics (OPVs) have emerged as a promising renewable energy candidate suitable for inexpensive and scalable production, being lightweight, flexible, and amenable to low-energy solution processing. However, despite having surpassed 10% power conversion efficiency (PCE) - widely held as the threshold for commercial viability - OPVs are still mostly constrained to lab-scale devices fabricated by spin coating. Efforts to translate to scalable roll-to-roll printing trail significantly in efficiency, commonly by an order of magnitude, highlighting the need to better understand the processing-morphology-performance relationship in the context of linear printing methods. The work presented will focus on two aspects of OPV development: 1) process control to translate from spin coating to printing in order to achieve scalable high-performance devices, and 2) application of improved tools for nanoscale morphological characterization. To the former, a thermodynamic model of phase separation is presented for a model polymer:fullerene system. Next we investigate a high-performance system which has demonstrated > 10% PCE via spincoating but only exhibits 1% PCE when roll-to-roll printed due to differences in drying dynamics and phase separation. OPV bulk heterojunctions are characterized using synchrotron X-ray scattering techniques, elucidating the impact of a critical residual chemical additive on the phase-separated morphology. It is discovered that excessive additive residence time within the semi-dry film gives rise to a hierarchal morphology that severely degrades device performance. Using the understanding gained in this study, we are able to achieve a printed OPV with 5.33% PCE, which is among the highest performing roll-to-roll OPVs to date. To the latter, we address the fact that commonly used microscopy techniques suffer from significant shortcomings for imaging OPVs. We demonstrate the first application of a technique known as Photo-induced Force Microscopy (PiFM) for imaging OPVs with nanoscale chemical specificity. Results from image processing are corroborated with established synchrotron methods and photovoltaic device performance, revealing excellent quantitative agreement. Further, we demonstrate that images from atomic force microscopy (AFM) and PiFM show poor correlation, highlighting the need to move beyond standard AFM for morphology characterization of bulk heterojunctions. We emphasize that PiFM is high-throughput, lab-scale, ambient, and requires no special sample preparation, filling an important underserved role in imaging of OPVs.

Book Modeling and Control for Micro Nano Devices and Systems

Download or read book Modeling and Control for Micro Nano Devices and Systems written by Ning Xi and published by CRC Press. This book was released on 2017-12-19 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.

Book Functional Supramolecular Architectures

Download or read book Functional Supramolecular Architectures written by Paolo Samorì and published by John Wiley & Sons. This book was released on 2014-06-13 with total page 1332 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of functional nanosystems based on organic and polymeric materials and their impact on current and future research and technology in the highly interdisciplinary field of materials science. As such, this handbook covers synthesis and fabrication methods, as well as properties and characterization of supramolecular architectures. Much of the contents are devoted to existing and emerging applications, such as organic solar cells, transistors, diodes, nanowires and molecular switches. The result is an indispensable resource for materials scientists, organic chemists, molecular physicists and electrochemists looking for a reliable reference on this hot topic.