EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microscopy Methods in Nanomaterials Characterization

Download or read book Microscopy Methods in Nanomaterials Characterization written by Sabu Thomas and published by Elsevier. This book was released on 2017-05-17 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microscopy Methods in Nanomaterials Characterization fills an important gap in the literature with a detailed look at microscopic and X-ray based characterization of nanomaterials. These microscopic techniques are used for the determination of surface morphology and the dispersion characteristics of nanomaterials. This book deals with the detailed discussion of these aspects, and will provide the reader with a fundamental understanding of morphological tools, such as instrumentation, sample preparation and different kinds of analyses, etc. In addition, it covers the latest developments and trends morphological characterization using a variety of microscopes. Materials scientists, materials engineers and scientists in related disciplines, including chemistry and physics, will find this to be a detailed, method-orientated guide to microscopy methods of nanocharacterization. Takes a method-orientated approach that includes case studies that illustrate how to carry out each characterization technique Discusses the advantages and disadvantages of each microscopy characterization technique, giving the reader greater understanding of conditions for different techniques Presents an in-depth discussion of each technique, allowing the reader to gain a detailed understanding of each

Book Joining Technologies for Composites and Dissimilar Materials  Volume 10

Download or read book Joining Technologies for Composites and Dissimilar Materials Volume 10 written by Gary L. Cloud and published by Springer. This book was released on 2016-10-08 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Joining Technologies for Composites and Dissimilar Materials, Volume 10 of the Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the tenth volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Composite Joints Non-Adhesive Bonding Adhesive Bonding Joining of Ceramic & Other Materials

Book Landscapes in the Eastern Mediterranean between the Future and the Past

Download or read book Landscapes in the Eastern Mediterranean between the Future and the Past written by Ioannis N. Vogiatzakis and published by MDPI. This book was released on 2020-06-03 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Glass fibres are melt-spun, silica-based inorganic materials. Their main application is in glass fibre-reinforced composites, which account for more than 90% of all fibre-reinforced composites currently produced. Nevertheless, improvement of the key properties of composites remains challenging. The objective of this reprint is to focus on actual research topics related to glass fibres comprising multifunctional nanostructured surfaces, e.g., graphene, which can lead to electrically conductive fibres and their interphases in composites that are capable of uptake under a variety of mechanical, chemical, humidity, and thermal conditions for in situ sensing functions. Sizing of glass fibres help to protect the filaments from failure during processing and improves wetting and adhesion strength. Furthermore, the interphase may be varied by suppressing or promoting heterogeneous nucleation of a thermoplastic matrix and, thus, the transcrystalline layer can improve the mechanical performance. Improved interfacial shear strength was shown with chitosan as a coupling agent in phosphate glass fiber/polycaprolactone composites. Modulus mapping of plasma-synthesised interphases in glass fibre/polyester composites was used to examine the local mechanical properties across the interphase region. In addition, numerous analytical techniques were applied to investigate changes within the surface of unsized boron-free E-glass fibers after thermal conditioning at temperatures up to 700 °C.

Book Glass Fibers 2018

Download or read book Glass Fibers 2018 written by Edith Maeder and published by MDPI. This book was released on 2020-12-15 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Glass fibres are melt-spun, silica-based inorganic materials. Their main application is in glass fibre-reinforced composites, which account for more than 90% of all fibre-reinforced composites currently produced. Nevertheless, improvement of the key properties of composites remains challenging. The objective of this reprint is to focus on actual research topics related to glass fibres comprising multifunctional nanostructured surfaces, e.g., graphene, which can lead to electrically conductive fibres and their interphases in composites that are capable of uptake under a variety of mechanical, chemical, humidity, and thermal conditions for in situ sensing functions. Sizing of glass fibres help to protect the filaments from failure during processing and improves wetting and adhesion strength. Furthermore, the interphase may be varied by suppressing or promoting heterogeneous nucleation of a thermoplastic matrix and, thus, the transcrystalline layer can improve the mechanical performance. Improved interfacial shear strength was shown with chitosan as a coupling agent in phosphate glass fiber/polycaprolactone composites. Modulus mapping of plasma-synthesised interphases in glass fibre/polyester composites was used to examine the local mechanical properties across the interphase region. In addition, numerous analytical techniques were applied to investigate changes within the surface of unsized boron-free E-glass fibers after thermal conditioning at temperatures up to 700 °C.

Book Micro and Nano Fibrillar Composites  MFCs and NFCs  from Polymer Blends

Download or read book Micro and Nano Fibrillar Composites MFCs and NFCs from Polymer Blends written by Sabu Thomas and published by Woodhead Publishing. This book was released on 2017-06-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends is a comprehensive reference for researchers, students and scientists working in the field of plastics recycling and composites. The book aims to determine the influence of micro and nanofibrillar morphology on the properties of immiscible blend systems. Chapters cover micro and nanofibrillar composites based on polyolefin, liquid crystal polymer, biodegradable polymers, polyester and polyamide blends in various industrial application fields. The book brings together panels of highly-accomplished experts in the field of plastics recycling, blends and composites systems. For several decades, plastic technology has played an important role in many industrial applications, such as packaging, automobiles, aerospace and construction. However the increasing use of plastics creates a lot of waste. This has led to restrictions on the use of some plastics for certain applications and a drive towards recycling of plastics. More recently, microfibrillar in-situ composites have been prepared from waste plastics such as PET/PP, PET/PE and Nylon/PP as a way of formulating new high performance polymer systems. This book tackles these issues and more, and is an ideal resource for anyone interested in polymer blends. Provides information on MFC and NFC based polymer blends that have been accumulated over the last 25 years, providing a useful reference Adopts a novel approach in terms of understanding the relationship between processing, morphology, structure, properties and applications in micro and nanofibrillar composites Contains contributions from leading experts in the field from both industrial and academic research

Book Characterization of Carbon Nanotube Based Composites under Consideration of Defects

Download or read book Characterization of Carbon Nanotube Based Composites under Consideration of Defects written by Moones Rahmandoust and published by Springer. This book was released on 2015-10-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes.

Book Surfaces and Interfaces in Natural Fibre Reinforced Composites

Download or read book Surfaces and Interfaces in Natural Fibre Reinforced Composites written by Nicolas Le Moigne and published by Springer. This book was released on 2018-02-06 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is addressed to Master and PhD students as well as researchers from academia and industry. It aims to provide the key definitions to understand the issues related to interface modifications in natural fibre based composites considering the particular supramolecular and micro- structures encountered in plant fibres. A particular emphasis is given to the modification and functionalization strategies of natural fibres and their impact on biocomposites behaviour and properties. Commonly used and newly developed treatment processes are described in view of scaling-up natural fibre treatments for their implementation in industry. Finally, a detailed and comprehensive description of the tools and methodologies developed to investigate and characterize surfaces and interfaces in natural fibre based composites is reviewed and discussed.

Book Bionanocomposites

Download or read book Bionanocomposites written by Khalid Mahmood Zia and published by Elsevier. This book was released on 2020-06-21 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bionanocomposites: Green Synthesis and Applications provides an in-depth study on the synthesis of a variety of bionanocomposites from different types of raw materials. In addition, the book offers an overview on the synthesis and applications of environmentally friendly bionanocomposites, with an emphasis on bionanocomposites of natural products. Final sections focus on various characterization techniques, their production, and the future prospects of sustainable bionanocomposites. Outlines the major characterization methods and processing techniques for bionanocomposites Explores how bionanocomopsites are being used to design new projects in medicine and environmental engineering Discusses how the properties of a variety of bionanocomposite classes make them suitable for particular industrial applications

Book Nanoindentation atomic Force Microscopy for Determination of Interphase Properties in Polymer Matrix Composites

Download or read book Nanoindentation atomic Force Microscopy for Determination of Interphase Properties in Polymer Matrix Composites written by Rajneesh Kumar and published by . This book was released on 2000 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micro and Nanomechanics  Volume 5

Download or read book Micro and Nanomechanics Volume 5 written by LaVern Starman and published by Springer. This book was released on 2017-10-17 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-and Nanomechanics, Volume 5 of the Proceedings of the 2017 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: MEMS & Energy Harvesting1D & 2D Materials/FabricationMicro/Nano Microscopy TechniquesNanomechanicsFlexible & Stretchable ElectronicsInterfaces & Adhesion

Book Multiscaled PVA Bionanocomposite Films

Download or read book Multiscaled PVA Bionanocomposite Films written by Mohanad Mousa and published by Springer Nature. This book was released on 2020-12-19 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a novel and holistic approach to multiscaled PVA bionanocomposite films used for electrical sensing, medical and packaging applications. With a combination of material characterization and modeling to understand the effect of nanoparticle size and shape, as well as 3D interphase properties and features such as interphase modulus and nanoscale dimensions, this book substantiates how excellent mechanical and thermal properties of these materials are achieved. Also it addresses the importance of using economical and ecofriendly bionanocomposites as potential green materials to support the goal of environmental sustainability with multifunctional properties.

Book Interfacial Engineering for Optimized Properties

Download or read book Interfacial Engineering for Optimized Properties written by and published by . This book was released on 1996 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Scanning Probe Microscopy

Download or read book Acoustic Scanning Probe Microscopy written by Francesco Marinello and published by Springer Science & Business Media. This book was released on 2012-10-04 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combination of atomic force microscopy with ultrasonic methods allows the nearfield detection of acoustic signals. The nondestructive characterization and nanoscale quantitative mapping of surface adhesion and stiffness or friction is possible. The aim of this book is to provide a comprehensive review of different scanning probe acoustic techniques, including AFAM, UAFM, SNFUH, UFM, SMM and torsional tapping modes. Basic theoretical explanations are given to understand not only the probe dynamics but also the dynamics of tip surface contacts. Calibration and enhancement are discussed to better define the performance of the techniques, which are also compared with other classical techniques such as nanoindentation or surface acoustic wave. Different application fields are described, including biological surfaces, polymers and thin films.

Book Engineered Interfaces in Fiber Reinforced Composites

Download or read book Engineered Interfaces in Fiber Reinforced Composites written by Jang-Kyo Kim and published by Elsevier. This book was released on 1998-10-21 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume.The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces.The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Book Carbon Nanotube Reinforced Polymers

Download or read book Carbon Nanotube Reinforced Polymers written by Roham Rafiee and published by Elsevier. This book was released on 2017-10-06 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions