Download or read book Nanomaterials and Nano Biochar in Reducing Soil Stress written by Vishnu D. Rajput and published by CRC Press. This book was released on 2024-12-06 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil deterioration, loss of productivity, and increases in toxic elements in soil induced by rapid industrial development and intensive cultivation are posing a serious threat to global food security and environmental sustainability. Nanotechnology has the capacity to expand current cultivation practices in a sustainable way. This new book details the potential this novel technology has to reduce soil pollution, enhance crop production, promote sustainable agriculture, and ultimately ensure food security. The book emphasizes how nano-biochar technology can be implemented to enhance microbial activities and other soil organism functionalities by applying or combining agricultural practices and soil health-improving amendments. Exploring the most promising carbon-rich material, that is, biochar, and more effectively, nano-biochar, this book covers the characteristics, production and benefits of nano-enhanced biochar. The role of nanobiochar in metal stress reduction, for soil health improvement, as a soil conditioner, in reducing soil stress using integrated approaches, for improving nutrient use efficiency, in salinity stress management, for sustainable crop production, and for arsenic remediation are all considered in detail. Starting with an introduction to nano-biochar, the book goes on to detail its benefits, its conditioner-like effect on soil, its role in improving soil health and reducing soil stress, how it improves nutrient use capacity in soil and its ability to alleviate salinity, heavy metal stress, and arsenic remediation in crops. With its comprehensive coverage of the important topic of biochar and nano-biochar, the book will prove useful to companies, students, professors, researchers, and scientists who are interested in the topic of soil stress management and sustainable agriculture as well as policymakers who can recommend novel agriculture amendments.
Download or read book Nanotechnology for Abiotic Stress Tolerance and Management in Crop Plants written by Ramesh Namdeo Pudake and published by Elsevier. This book was released on 2024-03-13 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology for Abiotic Stress Tolerance and Management in Crop Plants reviews the most recent literature on the role of nanomaterials in achieving sustainability in crop production in stressful environments. This book explores the adverse conditions caused by abiotic stress to crop plants, and the methods by which these conditions can be potentially overcome through developments in nanoscience and nanotechnology. Abiotic stresses such as drought, salinity, temperature stress, excessive water, heavy metal stress, UV stress etc. are major factors which may adversely affect the growth, development, and yield of crops. While recent research for ways of overcoming the physiological and biochemical changes brought on by these stresses has focused on genetic engineering of plants, additional research continues into alternative strategies to develop stress tolerant crops, including the use of nanoscience and nanotechnology. Providing an in-depth summary of research on nanomaterials and nano-based devices for field monitoring of crops, this book will serve as an ideal reference for academics, professionals, researchers, and students working in the field of agriculture, nanotechnology, plant science, material science, and crop production. - Presents advancements in our understanding of molecular and physiological interactions between nanoparticles and crop plants - Includes figures and illustrations to help readers visualize and easily understand the role of nanomaterials - Serves as an ideal reference for those studying smart nanomaterials, biosensors, and nanodevices for real-time plant stress measurement
Download or read book Bioinoculants with Nano compounds to Improve Soil Health A Step Toward Sustainable Agriculture written by Parul Chaudhary and published by Frontiers Media SA. This book was released on 2023-09-01 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, agrochemicals have enhanced crop productivity to meet increasing global food requirements. However, prolonged and extensive use of agrochemicals has resulted in contamination that persists in the soil system which can be biomagnified in the food chain. Furthermore, toxic chemicals adversely affect important soil microbial biota, the key drivers of biogeochemical cycles. This concern has raised the need to develop environmentally friendly and cost-effective nano- and micro-biotechnology strategies to minimize the adverse impact of agrochemicals and pesticide residues on soil microbiota, soil fertility, and their biomagnification in food crops. Nano-bioinoculants - the combination of nano-compounds and bioinoculants - have been increasingly used as soil amendments. They can improve agri-potential and soil health by maintaining soil physico- and biological properties, microbial diversity, and the nutrient-solubilizing microbial population. They also aid in improving crop yields and reducing agrochemical and pesticide residues. Nano-bioinoculants are more efficient than other methods for removing contaminants due to their small size, high reactivity, and catalytic activities. Several types of nano-compounds (chitosan, zeolite, gypsum, and silicon dioxide) have been used in conjunction with beneficial microbes (bacteria fungi, actinomycetes & endophytic bacteria) as nano-bioinoculants.
Download or read book Selenium and Nano Selenium in Environmental Stress Management and Crop Quality Improvement written by Mohammad Anwar Hossain and published by Springer Nature. This book was released on 2022-09-29 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crop plants growing under field conditions are constantly exposed to various abiotic and biotic stress factors leading to decreased yield and quality of produce. In order to achieve sustainable development in agriculture and to increase agricultural production for feeding an increasing global population, it is necessary to use ecologically compatible and environmentally friendly strategies to decrease the adverse effects of stresses on the plant. Selenium is one of the critical elements from the biological contexts because it is essential for human health; however, it becomes toxic at high concentrations. It has been widely reported that selenium can promote plant growth and alleviate various stresses as well as increase the quantity and quality of the yield of many plant species. Nonetheless, at high concentrations, selenium causes phytotoxicity. In the last decade, nanotechnology has emerged as a prominent tool for enhancing agricultural productivity. The production and applications of nanoparticles (NPs) have greatly increased in many industries, such as energy production, healthcare, agriculture, and environmental protection. The application of NPs has attracted interest for their potential to alleviate abiotic and biotic stresses in a more rapid, cost-effective, and more sustainable way than conventional treatment technologies. Recently, research related to selenium-NPs-mediated abiotic stresses and nutritional improvements in plants has received considerable interest by the scientific community. While significant progress was made in selenium biochemistry in relation to stress tolerance, an in-depth understanding of the molecular mechanisms associated with the selenium- and nano-selenium-mediated stress tolerance and bio-fortification in plants is still lacking. Gaining a better knowledge of the regulatory and molecular mechanisms that control selenium uptake, assimilation, and tolerance in plants is therefore vital and necessary to develop modern crop varieties that are more resilient to environmental stress. This book provides a comprehensive overview of the latest understanding of the physiological, biochemical, and molecular basis of selenium- and nano-selenium-mediated environmental stress tolerance and crop quality improvements in plants. It helps researchers to develop strategies to enhance crop productivity under stressful conditions and to better utilize natural resources to ensure future food security and to reduce environmental contamination. Finally, this book is a valuable resource for promoting future research into plant stress tolerance, and a reference book for researchers working on developing plants tolerant to abiotic and biotic stressors as well as bio-fortification and phytoremediation.
Download or read book Plant Abiotic Stress Tolerance written by Mirza Hasanuzzaman and published by Springer. This book was released on 2019-04-04 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.
Download or read book Nanobiostimulants written by Vandana Singh and published by Springer Nature. This book was released on with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications written by Jameel M. Al-Khayri and published by Springer Nature. This book was released on 2023-01-01 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the recent progress of nanotechnology with emphasis on the interaction between nanoparticles and plants on the cellular level. It is devoted to understanding the pathways of nanomaterials entry into plant cell and their influence on cellular organelle processes and influence on crop yield. It consists of 16 chapters grouped in 3 parts: Part I Cellular mechanisms, Part II Cellular macromolecules, and Part III Implications of nanomaterials. Chapters present the plant response to nanomaterial applications including morphological, physiochemical, and anatomical changes and their effect on plant growth and productivity. The book discusses the mechanisms of absorbance and translocation of nanoparticles and their interaction with the plant cellular biochemical compounds and organelles. It presents the current perspective of nanomaterials influence on cellular processes which include photosynthesis, photorespiration and pigment synthesis and accumulation. In addition, it provides current understanding of the impact of nanomaterials on cellular macromolecules including carbohydrates, lipids, nucleic acids, proteins, hormones, and antioxidant defense activities. Collectively, these processes and biochemical compounds have implications on crop yield. Chapters are written by globally recognized scientists and subjected to a rigorous review process to ensure quality presentation and scientific precision. Chapter begins with an introduction that covers similar contexts and includes a detailed discussion of the topic accompanied by high-quality color images, diagrams, and relevant details and concludes with recommendations for future study directions. Chapter "Impact of Nanomaterials on Plant Secondary Metabolism" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Download or read book Hybrid Nanomaterials for Sustainable Applications written by Janardhan Reddy Koduru and published by Elsevier. This book was released on 2023-04-11 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Nanomaterials for Sustainable Applications: Case Studies and Applications brings together the latest advances in hybrid nanocomposites and their diverse applications for improved sustainability. The book begins by introducing hybrid nanomaterials, synthesis strategies, and approaches to production for engineering applications. Subsequent sections provide chapters on key application areas, including water purification, nanobiotechnologies, energy storage, and biomedicine, presenting approaches for sustainable application for each usage. Throughout the book, key challenges are addressed, with case studies used to support implementation and improve end applications. This is a valuable resource for researchers and advanced students in nanotechnology, polymer science, sustainable materials, chemistry, chemical engineering, environmental science, and materials engineering, as well as industrial scientists, engineers, and R&D professionals with an interest in hybrid nanomaterials for a range of applications. - Offers the latest techniques in the synthesis and preparation of hybrid nanomaterials - Addresses challenges and uses case studies to support further development and implementation - Opens the door to key sustainable applications across water purification, nanobiotechnologies, energy storage and biomedicine
Download or read book Nanomaterials and Nanocomposites Exposures to Plants written by Azamal Husen and published by Springer Nature. This book was released on 2023-05-31 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the interaction between plants and nanomaterials/nanocomposites, and their effects ecology, the food chain and human health. It focuses on nanomaterials/nanocomposites phytotoxicity, which is an important precondition to promote the application of nanotechnology and to avoid the potential ecological risks. It describes the influencing factors of nanotoxicity of nanomaterials and the mechanisms of these toxic effects and defense mechanisms in plants. The chapters in this book are written by internationally renowned researchers and professionals and provides exciting and remarkable information (on the above-mentioned topics) to the scientist, researcher and student working field of plant biology, agricultural science, nanobiotechnology, plant biochemistry, plant physiology, plant biotechnology and many other interdisciplinary subjects.
Download or read book Nanomaterials for Soil Remediation written by Abdeltif Amrane and published by Elsevier. This book was released on 2020-11-29 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Soil Remediation provides a comprehensive description on basic knowledge and current research progress in the field of soil treatment using nanomaterials. Soil pollution refers to the presence of toxic chemicals in soil. Compared with air and water remediations, soil remediation is technically more challenging due to its complex composition. The synergy between engineering and nanotechnology has resulted in rapid developments in soil remediation. Nanomaterials could offer new routes to address challenging and pressing issues facing soil pollution. This book aims to explore how nanomaterials are used to cleanse polluted soils (organic compounds and heavy metal-contaminated soils) through various nanomaterials-based techniques (chemical/physical/biological techniques and their integrations). - Highlights how nanotechnology is being used to more accurately measure soil pollution levels - Discusses how the properties of nanomaterials are being used to make more efficient soil remediation techniques and products - Assesses the practical and regulatory challenges of using different nanomaterial-based products for soil repair
Download or read book Nanosilicon written by Vijay Kumar and published by Elsevier. This book was released on 2011-07-28 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Properties of nanosilicon in the form of nanoparticles, nanowires, nanotubes, and as porous material are of great interest. They can be used in finding suitable components for future miniature devices, and for the more exciting possibilities of novel optoelectronic applications due to bright luminescence from porous silicon, nanoparticles and nanowires. New findings from research into metal encapsulated clusters, silicon fullerenes and nanotubes have opened up a new paradigm in nanosilicon research and this could lead to large scale production of nanoparticles with control on size and shape as well as novel quasi one-dimensional structures. There are possibilities of using silicon as an optical material and in the development of a silicon laser. In Nanosilicon, leading experts cover state-of-the-art experimental and theoretical advances in the different forms of nanosilicon. Furthermore, applications of nanosilicon to single electron transistors, as photonic material, chemical and biological sensors at molecular scale, and silicon nanowire devices are also discussed. Self-assemblies of silicon nanoforms are important for applications. These developments are also related to cage structures of silicon in clathrates. With an interesting focus on the bottlenecks in the advancement of silicon based technology, this book provides a much-needed overview of the current state of understanding of nanosilicon research. - Latest developments in nanoparticles, nanowires and nanotubes of silicon - Focus on nanosilicon - a very timely subject attracting large interest - Novel chapters on metal encapsulated silicon clusters and nanotubes
Download or read book Nanotechnology for Environmental Pollution Decontamination written by Fernanda Maria Policarpo Tonelli and published by CRC Press. This book was released on 2022-11-30 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new volume presents informative research on the different aspects of employing nanotechnology for environmental pollution decontamination, highlighting the main tools, methods, and approaches for contaminants detection and remediation. The book takes a biotechnological point of view that considers the main environmental pollutants; the safety and economic aspects of nanoremediation, nanosensors and nanobiosensors for the detection of pollutants; and strategies to promote nanoremediation and nanobioremediation. The chapters offer a comprehensive overview of nanotechnologic strategies as essential tools to restore polluted environments and to make more feasible and harmonic the pathway to sustainable development. The volume also discusses the use of sensors to detect pollutants and to monitor the quality of environmental restoration. Topics include nanozymes; organic and inorganic pollutants threatening human health; different types of carbon-based and non-carbon-based nanomaterials in nanosensors and nanobiosensors to detect environmental pollution; nanomaterials that specifically deal with water, soil, or air pollution; and assisted nanoremediation promoted by plants (nanophytoremediation) or microorganisms (for example, mycorrhizal fungus) that promote in situ nano-phyto-mycorrhizo-remediation. Also addressed are aspects related to a macroperspective of nanoremediation that highlight the economic aspects related to nanotechnology, the safety aspects of the use of nanomaterials, and the sustainability aspects related to the use of nanomaterials in strategies of environmental restoration. Nanotechnology for Environmental Pollution Decontamination: Tools, Methods, and Approaches for Detection and Remediation offers extensive and comprehensive knowledge on nanotechnology applied to pollution detection and remediation, assisted or not by biological strategies.
Download or read book The Role of Nanoparticles in Plant Nutrition under Soil Pollution written by Vishnu D. Rajput and published by Springer Nature. This book was released on 2022-06-01 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This work should provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.
Download or read book Emerging Contaminants and Plants written by Tariq Aftab and published by Springer Nature. This book was released on 2023-02-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging contaminants (ECs) are predominantly unregulated anthropogenic chemicals that occur in air, soil, water, food, and plant/animal tissues in trace concentrations. ECs are persistent in the environment, capable of perturbing the physiology of target receptors and, therefore, are increasingly regarded as a subject of concern. This volume aims to enhance understanding of emerging contaminants’ effects on plants and the environment and to highlight and address the need of sustainable and eco-friendly approaches in mitigating and remediating the effects of ECs. The book comprises chapters from diverse areas dealing with biotechnology, microbial technology, nanotechnology, molecular biology, remediation, and more. This volume will be useful to remediation practitioners, researchers, regulators and graduate students.
Download or read book Biochar in Agriculture for Achieving Sustainable Development Goals written by Daniel C.W. Tsang and published by Academic Press. This book was released on 2022-05-14 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biochar in Agriculture for Achieving Sustainable Development Goals introduces the state-of-the-art of biochar for agricultural applications to actualize sustainable development goals and highlight current challenges and the way forward. The book focuses on scientific knowledge and biochar technologies for agricultural soil improvement and plant growth. Sections provide state-of-the-art knowledge on biochar production and characterization, focus on biochar for agricultural application and soil improvement, discuss the roles of biochar for environmental improvement in farmland to relieve water and waste management as well as climate change, highlight biochar used for boosting bioeconomy and clean energy, and discuss future prospects. This book will be important to agricultural engineers and researchers as well as those seeking to improve overall soil and environmental conditions through the use of biochar. - Focuses on biochar utilization in agricultural applications, targeting deeper elaboration of biochar as a cost-effective and renewable material in field-scale agriculture applications - Highlights biochar's role in boosting the bioeconomy which shows great potential for promoting a circular economy and maximizing environmental, social and economic benefits - Connects biochar applications with sustainable development goals
Download or read book Engineered Nanomaterials for Sustainable Agricultural Production Soil Improvement and Stress Management written by Azamal Husen and published by Academic Press. This book was released on 2022-08-04 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management highlights the latest advances in applying this important technology within agriculture sectors for sustainable growth, production and protection. The book explores various smart engineered nanomaterials which are now being used as an important tool for improving growth and productivity of crops facing abiotic stresses, improving the health of the soil in which those crops are growing, and addressing stresses once the plant begins to produce food yield. The book includes insights into the use of nanoparticles as bactericides, fungicides and nanofertilizers. In addition, the book includes an international representation of authors who have crafted chapters with clarity, reviewing up-to-date literature with lucid illustrations. It will be an important resource for researchers, nanobiotechnologists, agriculturists and horticulturists who need a comprehensive reference guide. - Broadens the role of smart engineered (carbon, fullerene or metal based, and more) nanomaterials, with up-to-date literature and practical illustrations - Equips readers with information on a number of morpho-physiological, biochemical, molecular phenomenon, and smart agricultural production - Enriches our understanding of various smart crop plants resilient to abiotic and biotic stresses in terms of nanomaterials exposure
Download or read book Nano Bioremediation Fundamentals and Applications written by Hafiz M. N. Iqbal and published by Elsevier. This book was released on 2021-11-10 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-Bioremediation: Fundamentals and Applications explores how nano-bioremediation is used to remedy environmental pollutants. The book's chapters focus on the design, fabrication and application of advanced nanomaterials and their integration with biotechnological processes for the monitoring and treatment of pollutants in environmental matrices. It is an important reference source for materials scientists, engineers and environmental scientists who are looking to increase their understanding of bioremediation at the nanoscale. The mitigation of environmental pollution is the biggest challenge to researchers and the scientific community, hence this book provides answers to some important questions. As an advanced hybrid technology, nano-bioremediation refers to the integration of nanomaterials and bioremediation for the remediation of pollutants. The rapid pace of urbanization, massive development of industrial sectors, and modern agricultural practices all cause a controlled or uncontrolled release of environmentally-related hazardous contaminants that are seriously threatening every key sphere, including the atmosphere, hydrosphere, biosphere, lithosphere, and anthroposphere. Explores the current and potential applications of nano-bioremediation in the remediation of hazardous pollutants Outlines the major properties and classes of nanomaterials that make them efficient bioremediation agents Assesses the major challenges of effectively implementing bioremediation techniques at the nanoscale