Download or read book Nano and mesoscale morphology evolution of metal films on weakly interacting surfaces written by Bo Lü and published by Linköping University Electronic Press. This book was released on 2018-01-11 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin films are structures consisting of one or several nanoscale atomic layers of material that are used to either functionalize a surface or constitute components in more complex devices. Many properties of a film are closely related to its microstructure, which allows films to be tailored to meet specific technological requirements. Atom-by-atom film growth from the vapor phase involves a multitude of atomic processes that may not be easily studied experimentally in real-time because they occur in small length- (? Å) and timescales (? ns). Therefore, different types of computer simulation methods have been developed in order to test theoretical models of thin film growth and unravel what experiments cannot show. In order to compare simulated and experimental results, the simulations must be able to model events on experimental time-scales, i.e. on the order of microseconds to seconds. This is achievable with the kinetic Monte Carlo (kMC) method. In this work, the initial growth stages of metal deposition on weakly-interacting substrates is studied using both kMC simulations as well as experiments whereby growth was monitored using in situ probes. Such film/substrate material combinations are widely encountered in technological applications including low-emissivity window coatings to parts of microelectronics components. In the first part of this work, a kMC algorithm was developed to model the growth processes of island nucleation, growth and coalescence when these are functions of deposition parameters such as the vapor deposition rate and substrate temperature. The dynamic interplay between these growth processes was studied in terms of the scaling behavior of the film thickness at the elongation transition, for both continuous and pulsed deposition fluxes, and revealed in both cases two distinct growth regimes in which coalescence is either active or frozen out during deposition. These growth regimes were subsequently confirmed in growth experiments of Ag on SiO2, again for both pulsed and continuous deposition, by measuring the percolation thickness as well as the continuous film formation thickness. However, quantitative agreement with regards to scaling exponents in the two growth regimes was not found between simulations and experiments, and this prompted the development of a method to determine the elongation transition thickness experimentally. Using this method, the elongation transition of Ag on SiO2 was measured, with scaling exponents found in much better agreement with the simulation results. Further, these measurement data also allowed the calculation of surface properties such as the terrace diffusion barrier of Ag on SiO2 and the average island coalescence rate. In the second part of this thesis, pioneering work is done to develop a fully atomistic, on-lattice model which describes the growth of Ag on weakly-interacting substrates. Simulations performed using this model revealed several key atomic-scale processes occurring at the film/substrate interface and on islands which govern island shape evolution, thereby contributing to a better understanding of how 3D island growth occurs at the atomic scale for a wide class of materials. The latter provides insights into the directed growth of metal nanostructures with controlled shapes on weakly-interacting substrates, including twodimensional crystals for use in catalytic and nano-electronic applications.
Download or read book Metal film growth on weakly interacting substrates written by Víctor Gervilla Palomar and published by Linköping University Electronic Press. This book was released on 2019-02-11 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin films are nanoscale layers of material, with exotic properties useful in diverse areas, ranging from biomedicine to nanoelectronics and surface protection. Film properties are not only determined by their chemical composition, but also by their microstructure and roughness, features that depend crucially on the growth process due to the inherent out-of equilibrium nature of the film deposition techniques. This fact suggest that it is possible to control film growth, and in turn film properties, in a knowledge-based manner by tuning the deposition conditions. This requires a good understanding of the elementary film-forming processes, and the way by which they are affected by atomic-scale kinetics. The kinetic Monte Carlo (kMC) method is a simulation tool that can model film evolution over extended time scales, of the order of microseconds, and beyond, and thus constitutes a powerful complement to experimental research aiming to obtain an universal understanding of thin film formation and morphological evolution. In this work, kMC simulations, coupled with analytical modelling, are used to investigate the early stages of formation of metal films and nanostructures supported on weakly-interacting substrates. This starts with the formation and growth of faceted 3D islands, that relies first on facile adatom ascent at single-layer island steps and subsequently on facile adatom upward diffusion from the base to the top of the island across its facets. Interlayer mass transport is limited by the rate at which adatoms cross from the sidewall facets to the island top, a process that determines the final height of the islands and leads non-trivial growth dynamics, as increasing temperatures favour 3D growth as a result of the upward transport. These findings explain the high roughness observed experimentally in metallic films grown on weakly-interacting substrates at high temperatures. The second part of the study focus on the next logical step of film formation, when 3D islands come into contact and fuse into a single one, or coalesce. The research reveals that the faceted island structure governs the macroscopic process of coalescence as well as its dynamics, and that morphological changes depend on 2D nucleation on the II facets. In addition, deposition during coalescence is found to accelerate the process and modify its dynamics, by contributing to the nucleation of new facets. This study provides useful knowledge concerning metal growth on weakly-interacting substrates, and, in particular, identifies the key atomistic processes controlling the early stages of formation of thin films, which can be used to tailor deposition conditions in order to achieve films with unique properties and applications.
Download or read book Thin metal films on weakly interacting substrates written by Andreas Jamnig and published by Linköping University Electronic Press. This book was released on 2020-09-30 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vapor-based growth of thin metal films with controlled morphology on weakly-interacting substrates (WIS), including oxides and van der Waals materials, is essential for the fabrication of multifunctional metal contacts in a wide array of optoelectronic devices. Achieving this entails a great challenge, since weak film/substrate interactions yield a pronounced and uncontrolled 3D morphology. Moreover, the far-from-equilibrium nature of vapor-based film growth often leads to generation of mechanical stress, which may further compromise device reliability and functionality. The objectives of this thesis are related to metal film growth on WIS and seek to: (i) contribute to the understanding of atomic-scale processes that control film morphological evolution; (ii) elucidate the dynamic competition between nanoscale processes that govern film stress generation and evolution; and (iii) develop methodologies for manipulating and controlling nanoscale film morphology between 2D and 3D. Investigations focus on magnetron sputter-deposited Ag and Cu films on SiO2 and amorphous carbon (a-C) substrates. Research is conducted by strategically combining of in situ and real-time film growth monitoring, ex situ chemical and (micro)-structural analysis, optical modelling, and deterministic growth simulations. In the first part, the scaling behavior of characteristic morphological transition thicknesses (i.e., percolation and continuous film formation thickness) during growth of Ag and Cu films on a-C are established as function of deposition rate and temperature. These data are interpreted using a theoretical framework based on the droplet growth theory and the kinetic freezing model for island coalescence, from which the diffusion rates of film forming species during Ag and Cu growth are estimated. By combining experimental data with ab initio molecular dynamics simulations, diffusion of multiatomic clusters, rather than monomers, is identified as the rate-limiting structure-forming process. In the second part, the effect of minority metallic or gaseous species (Cu, N2, O2) on Ag film morphological evolution on SiO2 is studied. By employing in situ spectroscopic ellipsometry, it is found that addition of minority species at the film growth front promotes 2D morphology, but also yields an increased continuous-layer resistivity. Ex situ analyses show that 2D morphology is favored because minority species hinder the rate of coalescence completion. Hence, a novel growth manipulation strategy is compiled in which minority species are deployed with high temporal precision to selectively target specific film growth stages and achieve 2D morphology, while retaining opto-electronic properties of pure Ag films. In the third part, the evolution of stress during Ag and Cu film growth on a-C and its dependence on growth kinetics (as determined by deposition rate, substrate temperature) is systematically investigated. A general trend toward smaller compressive stress magnitudes with increasing temperature/deposition rate is found, related to increasing grain size/decreasing adatom diffusion length. Exception to this trend is found for Cu films, in which oxygen incorporation from the residual growth atmosphere at low deposition rates inhibits adatom diffusivity and decreases the magnitude of compressive stress. The effect of N2 on stress type and magnitude in Ag films is also studied. While Ag grown in N2-free atmosphere exhibits a typical compressive-tensile-compressive stress evolution as function of thickness, addition of a few percent of N2 yields to a stress turnaround from compressive to tensile stress after film continuity which is attributed to giant grain growth and film roughening. The overall results of the thesis provide the foundation to: (i) determine diffusion rates over a wide range of WIS film/substrates systems; (ii) design non-invasive strategies for multifunctional contacts in optoelectronic devices; (iii) complete important missing pieces in the fundamental understanding of stress, which can be used to expand theoretical descriptions for predicting and tuning stress magnitude. La morphologie de films minces métalliques polycristallins élaborés par condensation d’une phase vapeur sur des substrats à faible interaction (SFI) possède un caractère 3D intrinsèque. De plus, la nature hors équilibre de la croissance du film depuis une phase vapeur conduit souvent à la génération de contraintes mécaniques, ce qui peut compromettre davantage la fiabilité et la fonctionnalité des dispositifs optoélectroniques. Les objectifs de cette thèse sont liés à la croissance de films métalliques sur SFI et visent à: (i) contribuer à une meilleure compréhension des processus à l'échelle atomique qui contrôlent l'évolution morphologique des films; (ii) élucider les processus dynamiques qui régissent la génération et l'évolution des contraintes en cours de croissance; et (iii) développer des méthodologies pour manipuler et contrôler la morphologie des films à l'échelle nanométrique. L’originalité de l’approche mise en œuvre consiste à suivre la croissance des films in situ et en temps réel par couplage de plusieurs diagnostics, complété par des analyses microstructurales ex situ. Les grandeurs mesurées sont confrontées à des modèles optiques et des simulations atomistiques. La première partie est consacrée à une étude de comportement d’échelonnement des épaisseurs de transition morphologiques caractéristiques, à savoir la percolation et la continuité du film, lors de la croissance de films polycristallins d'Ag et de Cu sur carbone amorphe (a-C). Ces grandeurs sont examinées de façon systématique en fonction de la vitesse de dépôt et de la température du substrat, et interprétées dans le cadre de la théorie de la croissance de gouttelettes suivant un modèle cinétique décrivant la coalescence d’îlots, à partir duquel les coefficients de diffusion des espèces métalliques sont estimés. En confrontant les données expérimentales à des simulations par dynamique moléculaire ab initio, la diffusion de clusters multiatomiques est identifiée comme l’étape limitante le processus de croissance. Dans la seconde partie, l’incorporation, et l’impact sur la morphologie, d’espèces métalliques ou gazeuses minoritaires (Cu, N2, O2) lors de la croissance de film Ag sur SiO2 est étudié. A partir de mesures ellipsométriques in situ, on constate que l'addition d'espèces minoritaires favorise une morphologie 2D, entravant le taux d'achèvement de la coalescence, mais donne également une résistivité accrue de la couche continue. Par conséquent, une stratégie de manipulation de la croissance est proposée dans laquelle des espèces minoritaires sont déployées avec une grande précision temporelle pour cibler sélectivement des stades de croissance de film spécifiques et obtenir une morphologie 2D, tout en conservant les propriétés optoélectroniques des films d’Ag pur. Dans la troisième partie, l'évolution des contraintes résiduelles lors de la croissance des films d'Ag et de Cu sur a-C et leur dépendance à la cinétique de croissance est systématiquement étudiée. On observe une tendance générale vers des amplitudes de contrainte de compression plus faibles avec une augmentation de la température/vitesse de dépôt, liée à l'augmentation de la taille des grains/à la diminution de la longueur de diffusion des adatomes. Également, l’ajout dans le plasma de N2 sur le type et l'amplitude des contraintes dans les films d'Ag est étudié. L'ajout de quelques pourcents de N2 en phase gaz donne lieu à un renversement de la contrainte de compression et une évolution en tension au-delà de la continuité du film. Cet effet est attribué à une croissance anormale des grains géants et le développement de rugosité de surface. L’ensemble des résultats obtenus dans cette thèse fournissent les bases pour: (i) déterminer les coefficients de diffusion sur une large gamme de systèmes films/SFI; (ii) concevoir des stratégies non invasives pour les contacts multifonctionnels dans les dispositifs optoélectroniques; (iii) apporter des éléments de compréhension à l’origine du développement de contrainte, qui permettent de prédire et contrôler le niveau de contrainte intrinsèque à la croissance de films minces polycristallins.
Download or read book Nanocasting written by An-Hui Lu and published by Royal Society of Chemistry. This book was released on 2010 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1999 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Metal Oxide Nanoparticles in Organic Solvents written by Markus Niederberger and published by Springer Science & Business Media. This book was released on 2009-09-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.
Download or read book Surface Enhanced Raman Scattering written by Zhong-Qun Tian and published by John Wiley & Sons Incorporated. This book was released on 2010-06-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface-Enhanced Raman Spectroscopy: Principles, Experiments, and Applications is a comprehensive, up to date, and balanced treatment of the theoretical and practical aspects of Surface-Enhanced Raman Scattering (SERS), a useful branch of spectroscopy for several areas of science. This book describes the basic principles of SERS, including SERS mechanisms, performing SERS measurements, and interpreting data. Also emphasized are applications in electrochemistry; catalysis; surface processing and corrosion; Self-Assemble-Layer and L-B Films; polymer science; biology; medicine and drug analysis; sensors; fuel cells; forensics; and archaeology. It is an essential guide for student and professional analytical chemists.
Download or read book Surface Plasmon Nanophotonics written by Mark L. Brongersma and published by Springer. This book was released on 2007-09-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a new class of photonic devices, known as surface plasmon nanophotonic structures. The book highlights several exciting new discoveries, while providing a clear discussion of the underlying physics, the nanofabrication issues, and the materials considerations involved in designing plasmonic devices with new functionality. Chapters written by the leaders in the field of plasmonics provide a solid background to each topic.
Download or read book Manufacturing Techniques for Microfabrication and Nanotechnology written by Marc J. Madou and published by CRC Press. This book was released on 2011-06-13 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for science and engineering students, this text focuses on emerging trends in processes for fabricating MEMS and NEMS devices. The book reviews different forms of lithography, subtractive material removal processes, and additive technologies. Both top-down and bottom-up fabrication processes are exhaustively covered and the merits of the different approaches are compared. Students can use this color volume as a guide to help establish the appropriate fabrication technique for any type of micro- or nano-machine.
Download or read book Thin Film Metal Oxides written by Shriram Ramanathan and published by Springer Science & Business Media. This book was released on 2009-12-03 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.
Download or read book Core Concepts in Supramolecular Chemistry and Nanochemistry written by Jonathan W. Steed and published by John Wiley & Sons. This book was released on 2007-04-30 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supramolecular chemistry and nanochemistry are two strongly interrelated cutting edge frontiers in research in the chemical sciences. The results of recent work in the area are now an increasing part of modern degree courses and hugely important to researchers. Core Concepts in Supramolecular Chemistry and Nanochemistry clearly outlines the fundamentals that underlie supramolecular chemistry and nanochemistry and takes an umbrella view of the whole area. This concise textbook traces the fascinating modern practice of the chemistry of the non-covalent bond from its fundamental origins through to it expression in the emergence of nanochemistry. Fusing synthetic materials and supramolecular chemistry with crystal engineering and the emerging principles of nanotechnology, the book is an ideal introduction to current chemical thought for researchers and a superb resource for students entering these exciting areas for the first time. The book builds from first principles rather than adopting a review style and includes key references to guide the reader through influential work. supplementary website featuring powerpoint slides of the figures in the book further references in each chapter builds from first principles rather than adopting a review style includes chapter on nanochemistry clear diagrams to highlight basic principles
Download or read book Cluster Beam Deposition of Functional Nanomaterials and Devices written by Paolo Milani and published by Elsevier. This book was released on 2020-03-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster Beam Deposition of Functional Nanomaterials and Devices, Volume 15, provides up-to-date information on the CBD of novel nanomaterials and devices. The book offers an overview of gas phase synthesis in a range of nanoparticles, along with discussions on the development of several devices and applications. Applications include, but are not limited to catalysis, smart nanocomposites, nanoprobes, electronic devices, gas sensors and biosensors. This is an important reference source for materials scientists and engineers who want to learn more about this sustainable, innovative manufacturing technology.
Download or read book Oxide Surfaces written by and published by Elsevier. This book was released on 2001-05-21 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.
Download or read book Comprehensive Membrane Science and Engineering written by Enrico Drioli and published by Newnes. This book was released on 2010-07-09 with total page 1528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Membrane Science and Engineering, Four Volume Set covers all aspects of membrane science and technology - from basic phenomena to the most advanced applications and future perspectives. Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. The work presents researchers and industrial managers with an indispensable tool toward achieving these aims. Covers membrane science theory and economics, as well as applications ranging from chemical purification and natural gas enrichment to potable water Includes contributions and case studies from internationally recognized experts and from up-and-coming researchers working in this multi-billion dollar field Takes a unique, multidisciplinary approach that stimulates research in hybrid technologies for current (and future) life-saving applications (artificial organs, drug delivery)
Download or read book Essentials of Nanotechnology written by Jeremy Ramsden and published by Bookboon. This book was released on 2008 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Pulsed Laser Ablation written by Ion N. Mihailescu and published by CRC Press. This book was released on 2018-01-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulsed laser–based techniques for depositing and processing materials are an important area of modern experimental and theoretical scientific research and development, with promising, challenging opportunities in the fields of nanofabrication and nanostructuring. Understanding the interplay between deposition/processing conditions, laser parameters, as well as material properties and dimensionality is demanding for improved fundamental knowledge and novel applications. This book introduces and discusses the basic principles of pulsed laser–matter interaction, with a focus on its peculiarities and perspectives compared to other conventional techniques and state-of-the-art applications. The book starts with an overview of the growth topics, followed by a discussion of laser–matter interaction depending on laser pulse duration, background conditions, materials, and combination of materials and structures. The information outlines the foundation to introduce examples of laser nanostructuring/processing of materials, pointing out the importance of pulsed laser–based technologies in modern (nano)science. With respect to similar texts and monographs, the book offers a comprehensive review including bottom-up and top-down laser-induced processes for nanoparticles and nanomicrostructure generation. Theoretical models are discussed by correlation with advanced experimental protocols in order to account for the fundamentals and underline physical mechanisms of laser–matter interaction. Reputed, internationally recognized experts in the field have contributed to this book. In particular, this book is suitable for a reader (graduate students as well as postgraduates and more generally researchers) new to the subject of pulsed laser ablation in order to gain physical insight into and advanced knowledge of mechanisms and processes involved in any deposition/processing experiment based on pulsed laser–matter interaction. Since knowledge in the field is given step by step comprehensively, this book serves as a valid introduction to the field as well as a foundation for further specific readings.
Download or read book Nanoparticulate Materials written by Kathy Lu and published by John Wiley & Sons. This book was released on 2012-09-25 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Serving as the only systematic and comprehensive treatment on the topic of nanoparticle-based materials, this book covers synthesis, characterization, assembly, shaping and sintering of all types of nanoparticles including metals, ceramics, and semiconductors. A single-authored work, it is suitable as a graduate-level text in nanomaterials courses.