Download or read book Multivariable Calculus and Differential Geometry written by Gerard Walschap and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-07-01 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to differential geometry for the non-specialist. It includes most of the required material from multivariable calculus, linear algebra, and basic analysis. An intuitive approach and a minimum of prerequisites make it a valuable companion for students of mathematics and physics. The main focus is on manifolds in Euclidean space and the metric properties they inherit from it. Among the topics discussed are curvature and how it affects the shape of space, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Download or read book Multivariable Calculus and Differential Geometry written by Gerard Walschap and published by de Gruyter. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of
Download or read book Multivariate Calculus and Geometry written by Sean Dineen and published by Springer Science & Business Media. This book was released on 2001-03-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the higher-level reader with a comprehensive review of all important aspects of Differential Calculus, Integral Calculus and Geometric Calculus of several variables The revised edition, which includes additional exercises and expanded solutions, and gives a solid description of the basic concepts via simple familiar examples which are then tested in technically demanding situations. Readers will gain a deep understanding of the uses and limitations of multivariate calculus.
Download or read book Multivariable Mathematics written by Theodore Shifrin and published by John Wiley & Sons. This book was released on 2004-01-26 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
Download or read book The Geometry of Geodesics written by Herbert Busemann and published by Courier Corporation. This book was released on 2012-07-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Download or read book Calculus on Manifolds written by Michael Spivak and published by Westview Press. This book was released on 1965 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Download or read book Student Solution Manual to Accompany the 4th Edition of Vector Calculus Linear Algebra and Differential Forms a Unified Approach written by John Hamal Hubbard and published by . This book was released on 2009 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Multivariable Calculus and Mathematica written by Kevin R. Coombes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.
Download or read book Manifolds and Differential Geometry written by Jeffrey Marc Lee and published by American Mathematical Soc.. This book was released on 2009 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Download or read book Differential Geometry written by Wolfgang Kühnel and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Download or read book Multivariate Calculus and Geometry written by Seán Dineen and published by Springer. This book was released on 2014-09-18 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook not only follows this programme, but additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Download or read book Advanced Calculus of Several Variables written by C. H. Edwards and published by Academic Press. This book was released on 2014-05-10 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Download or read book Guide to Geometric Algebra in Practice written by Leo Dorst and published by Springer Science & Business Media. This book was released on 2011-08-28 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.