EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multiscale Multimodel Simulation of Micromagnetic Singularities

Download or read book Multiscale Multimodel Simulation of Micromagnetic Singularities written by Christian Andreas and published by Forschungszentrum Jülich. This book was released on 2014 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ab initio description of transverse transport due to impurity scattering in transition metals

Download or read book Ab initio description of transverse transport due to impurity scattering in transition metals written by Bernd Zimmermann and published by Forschungszentrum Jülich. This book was released on 2014 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Magnetic Materials

Download or read book Handbook of Magnetic Materials written by Ekkes H. Brück and published by Elsevier. This book was released on 2020-11-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Magnetic Materials, Volume 29, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors on topics such as spin-orbit torque. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Magnetic Materials series

Book Spin Dynamics in Confined Magnetic Structures I

Download or read book Spin Dynamics in Confined Magnetic Structures I written by Burkard Hillebrands and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory chapters help newcomers to understand the basic concepts, and the more advanced chapters give the current state of the art for most spin dynamic issues in the milliseconds to femtoseconds range. Emphasis is placed on both the discussion of the experimental techniques and on the theoretical work. The comprehensive presentation of these developments makes this volume very timely and valuable for every researcher working in the field of magnetism.

Book Magnetic Nanostructures

Download or read book Magnetic Nanostructures written by Hari Singh Nalwa and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Twelve contributions comprise a reference source that is a coherent presentation of the state of the art in this fast growing area of nanotechnology research. Magnetic nanostructures are important for their phenomenal potential for storage; their great commercial value will come from applications in

Book Nanomagnetism and Spintronics

Download or read book Nanomagnetism and Spintronics written by Teruya Shinjo and published by Elsevier. This book was released on 2013-10-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. - Provides a concise, thorough evaluation of current research - Surveys the important findings up to 2012 - Examines the future of devices and the importance of spin current

Book Micromagnetism and the Microstructure of Ferromagnetic Solids

Download or read book Micromagnetism and the Microstructure of Ferromagnetic Solids written by Helmut Kronmüller and published by Cambridge University Press. This book was released on 2003-08-28 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is micromagnetism and microstructure as well as the analysis of the relations between characteristic properties of the hysteresis loop and microstructure. Also presented is an analysis of the role of microstructure in the fundamental magnetic properties (for example, magnetorestriction or critical behaviour) of crystalline and amorphous alloys. The authors apply the theory of micromagnetism to all aspects of advanced magnetic materials including domain patterns and magnetization processes under the influence of defect structures. Coverage includes modern developments in computational micromagnetism and its application to spin structures of small particles and platelets. It will be of interest to researchers and graduate students in condensed matter, physics, electrical engineering and materials science, as well as to industrial researchers working in the electrotechnical and recording industry.

Book Magnetic Nano  and Microwires

Download or read book Magnetic Nano and Microwires written by Manuel Vázquez and published by Woodhead Publishing. This book was released on 2015-05-27 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. - Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires - Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications - Combines the expertise of specialists from around the globe to give a broad overview of current and future trends

Book Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems

Download or read book Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems written by Clemens Pechstein and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.

Book Bibliography of Publications

Download or read book Bibliography of Publications written by George Washington University. Human Resources Research Office and published by . This book was released on 1965 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomistic Spin Dynamics

    Book Details:
  • Author : Olle Eriksson
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198788665
  • Pages : 265 pages

Download or read book Atomistic Spin Dynamics written by Olle Eriksson and published by Oxford University Press. This book was released on 2017 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several large experimental facilities that focus on detection and probing magnetization dynamics have been realized in Europe, USA and Japan. This book covers theoretical and practical aspects of the vibrant and emerging research field of magnetization dynamics.

Book Magnetic Domain Walls in Bubble Materials

Download or read book Magnetic Domain Walls in Bubble Materials written by A. P. Malozemoff and published by Academic Press. This book was released on 2013-10-22 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Domain Walls in Bubble Materials covers the physics of domain walls in bubble domain materials. The book describes the microscopic origins and characteristics of the material parameters; the principles of domain statics and the Landau-Lifshitz equation, which is the basic equation of magnetization dynamics; and its physical significance. The text then discusses the experimental techniques, both static and dynamic, used in studying domain walls; the static internal structure of bubble-domain walls; the Bloch-wall dynamics based on one-dimensional solutions of the Landau-Lifshitz equation; and the wall-motion theory. The theory to low velocity phenomena in domain walls containing vertical Bloch; high-velocity radial and quasi-planar wall motions; and nonlinear bubble translation including the implications of the theory for bubble motion in devices, are also considered. The book further surveys special phenomena involving vibrations and wave motions of walls, and the effects of microwave-frequency fields on walls. Engineers and materials researchers involved in the development of practical bubble devices will find the book invaluable.

Book Physical Properties of Nanorods

Download or read book Physical Properties of Nanorods written by Roman Krahne and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.

Book Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Download or read book Low Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB written by Sergey N. Makarov and published by John Wiley & Sons. This book was released on 2015-05-13 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Book Magnetism in Condensed Matter

Download or read book Magnetism in Condensed Matter written by Stephen Blundell and published by OUP Oxford. This book was released on 2001-10-05 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theorectical principles are applied to real systems. There is substantial discussion of experimental techniques and current reserach topics. The book is copiously illustrated and contains detailed appendices which cover the fundamental principles.

Book Brain and Human Body Modeling

Download or read book Brain and Human Body Modeling written by Sergey Makarov and published by Springer Nature. This book was released on 2019-08-27 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.

Book Canonical Duality Theory

Download or read book Canonical Duality Theory written by David Yang Gao and published by Springer. This book was released on 2017-10-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization. With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in complex systems with real-world applications in non-convex analysis, non-monotone variational inequalities, integer programming, topology optimization, post-buckling of large deformed structures, etc. Researchers and graduate students will find explanation and potential applications in multidisciplinary fields.