EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multilevel Finite Element Approximation

Download or read book Multilevel Finite Element Approximation written by and published by Springer-Verlag. This book was released on 2013-04-17 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multilevel Finite Element Approximation

Download or read book Multilevel Finite Element Approximation written by Peter Oswald and published by Teubner Skripten zur Numerik. This book was released on 1994 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes reflect, to a great part, the present research interests of the author but were influenced by the ideas and the work of many colleagues. They are based on lectures given by the author at the Institutes of Mathematics and Informatics at the Technical U niversity of Munich during February /March 1993. I wish to warmly thank ehr. Zenger and R. Hoppe for their generous support and the many discussions I had with them and their younger colleagues during the last year. Part of the results contained in section 4 is the output of these discussions and joint work with M. Griebel. There are many other mathematicians who encouraged me (or personally or by their mathematical work) to step into the field of multilevel methods. I want to acknowledge the support I received from W. Dahmen, R. A. DeVore, P. Deufl­ hard, W. Hackbusch, H. Trieb el , O. Widlund, H. Yserentant and many others. On the other hand, I should apologize for not mentioning many interesting re­ search results and names standing for recent developments in the fields which are the subject of these notes. Finally, I want to thank my family, my wife Olga and my daughters Evelyn and Annelie, for their everyday patience and support.

Book Finite Element Multilevel Approximation of a Function and Applications

Download or read book Finite Element Multilevel Approximation of a Function and Applications written by Olivier Goubet and published by . This book was released on 1993 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Finite Element Methods and Applications

Download or read book Advanced Finite Element Methods and Applications written by Thomas Apel and published by Springer Science & Business Media. This book was released on 2012-07-16 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.

Book Multilevel Block Factorization Preconditioners

Download or read book Multilevel Block Factorization Preconditioners written by Panayot S. Vassilevski and published by Springer Science & Business Media. This book was released on 2008-10-22 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to provide a comprehensive, self-contained and rigorous presentation of some of the most powerful preconditioning methods for solving finite element equations in a common block-matrix factorization framework. The book covers both algorithms and analysis using a common block-matrix factorization approach which emphasizes its unique feature. Topics covered include the classical incomplete block-factorization preconditioners, the most efficient methods such as the multigrid, algebraic multigrid, and domain decomposition. This text can serve as an indispensable reference for researchers, graduate students, and practitioners. It can also be used as a supplementary text for a topics course in preconditioning and/or multigrid methods at the graduate level.

Book Multigrid Finite Element Methods for Electromagnetic Field Modeling

Download or read book Multigrid Finite Element Methods for Electromagnetic Field Modeling written by Yu Zhu and published by John Wiley & Sons. This book was released on 2006-02-03 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Book Finite Elements and Approximation

Download or read book Finite Elements and Approximation written by O. C. Zienkiewicz and published by Courier Dover Publications. This book was released on 2006 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.

Book Parallel Multilevel Methods

Download or read book Parallel Multilevel Methods written by Gerhard Zumbusch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are covered from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed.

Book Multiscale  Nonlinear and Adaptive Approximation

Download or read book Multiscale Nonlinear and Adaptive Approximation written by Ronald DeVore and published by Springer Science & Business Media. This book was released on 2009-09-16 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.

Book The Mathematical Theory of Finite Element Methods

Download or read book The Mathematical Theory of Finite Element Methods written by Susanne Brenner and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Book Multi Scale Finite Element Approximation for Transport in Heterogeneous Porous Media

Download or read book Multi Scale Finite Element Approximation for Transport in Heterogeneous Porous Media written by and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this study is to develop an efficient multiscale coarse grid method which can be used as a competitive algorithm in studying composite materials and flow transport in strongly heterogeneous porous media. On one hand, we have explored the possibility of using adaptive mesh to reduce the modeling error introduced by the traditional moment average technique. On the other hand, we found that in the case of high aspect ratio permeability tensor, the modeling error in ignoring high order moments (3rd order or higher) could be very large. To overcome this difficulty, we have investigated an alternative approach that uses two-scale homogenization analysis to derive a coarse grid model in a systematic way. Finally, we have made some progress in developing numerical methods to solve multiscale nonlinear stochastic partial differential equations by using Wiener-Chaos expansions. These methods will reduce the problem of solving stochastic PDEs to solving a set of deterministic PDEs. This numerical method can be combined with our multiscale computational method, and can be used to compute accurately high order statistical quantities more efficiently than the traditional Monte-Carlo method.

Book Multilevel Methods for the Generalized Finite Element Method Discretizations

Download or read book Multilevel Methods for the Generalized Finite Element Method Discretizations written by Durkbin Cho and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Approximation Over Multiple Coordinate Systems

Download or read book Finite Element Approximation Over Multiple Coordinate Systems written by Kevin Joseph Scully and published by . This book was released on 2003 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Element Method  Theory  Implementation  and Applications

Download or read book The Finite Element Method Theory Implementation and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Book Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Download or read book Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems written by Jens Lang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.