Download or read book Moduli of K stable Varieties written by Giulio Codogni and published by Springer. This book was released on 2019-06-27 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kähler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kähler and almost-Kähler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kähler-Einstein metrics.
Download or read book Families of Varieties of General Type written by János Kollár and published by Cambridge University Press. This book was released on 2023-04-30 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.
Download or read book Birational Geometry K hler Einstein Metrics and Degenerations written by Ivan Cheltsov and published by Springer Nature. This book was released on 2023-05-23 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the proceedings of a series of conferences dedicated to birational geometry of Fano varieties held in Moscow, Shanghai and Pohang The conferences were focused on the following two related problems: • existence of Kähler–Einstein metrics on Fano varieties • degenerations of Fano varieties on which two famous conjectures were recently proved. The first is the famous Borisov–Alexeev–Borisov Conjecture on the boundedness of Fano varieties, proved by Caucher Birkar (for which he was awarded the Fields medal in 2018), and the second one is the (arguably even more famous) Tian–Yau–Donaldson Conjecture on the existence of Kähler–Einstein metrics on (smooth) Fano varieties and K-stability, which was proved by Xiuxiong Chen, Sir Simon Donaldson and Song Sun. The solutions for these longstanding conjectures have opened new directions in birational and Kähler geometries. These research directions generated new interesting mathematical problems, attracting the attention of mathematicians worldwide. These conferences brought together top researchers in both fields (birational geometry and complex geometry) to solve some of these problems and understand the relations between them. The result of this activity is collected in this book, which contains contributions by sixty nine mathematicians, who contributed forty three research and survey papers to this volume. Many of them were participants of the Moscow–Shanghai–Pohang conferences, while the others helped to expand the research breadth of the volume—the diversity of their contributions reflects the vitality of modern Algebraic Geometry.
Download or read book Moduli Theory and Classification Theory of Algebraic Varieties written by H. Popp and published by Springer. This book was released on 2006-11-15 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modern Geometry written by Vicente Muñoz and published by American Mathematical Soc.. This book was released on 2018-09-05 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.
Download or read book Moduli of Weighted Hyperplane Arrangements written by Valery Alexeev and published by Birkhäuser. This book was released on 2015-05-18 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements (shas).
Download or read book Complex and Symplectic Geometry written by Daniele Angella and published by Springer. This book was released on 2017-10-12 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Download or read book Stacks Project Expository Collection written by Pieter Belmans and published by Cambridge University Press. This book was released on 2022-09-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
Download or read book Moduli of K stable Varieties written by Giulio Codogni and published by . This book was released on 2019 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kèahler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kèahler and almost-Kèahler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kèahler-Einstein metrics.
Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
Download or read book Theory of Algebraic Surfaces written by Kunihiko Kodaira and published by Springer Nature. This book was released on 2020-09-17 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.
Download or read book Quasi projective Moduli for Polarized Manifolds written by Eckart Viehweg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Download or read book Proceedings Of The International Congress Of Mathematicians 2018 Icm 2018 In 4 Volumes written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Download or read book Classification of Algebraic Varieties written by Carel Faber and published by European Mathematical Society. This book was released on 2011 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fascinating and surprising developments are taking place in the classification of algebraic varieties. The work of Hacon and McKernan and many others is causing a wave of breakthroughs in the minimal model program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the field. Inspired by this exciting progress, the editors organized a meeting at Schiermonnikoog and invited leading experts to write papers about the recent developments. The result is the present volume, a lively testimony to the sudden advances that originate from these new ideas. This volume will be of interest to a wide range of pure mathematicians, but will appeal especially to algebraic and analytic geometers.
Download or read book Algebraic Geometry Salt Lake City 2015 written by Tommaso de Fernex and published by American Mathematical Soc.. This book was released on 2018-06-01 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Download or read book Tropical and Non Archimedean Geometry written by Omid Amini and published by American Mathematical Soc.. This book was released on 2014-12-26 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.