Download or read book Modern Plasma Physics Volume 1 Physical Kinetics of Turbulent Plasmas written by Patrick H. Diamond and published by Cambridge University Press. This book was released on 2014-07-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics. Volume I develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally 'plasma' topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.
Download or read book Plasma Physics written by Andreas Dinklage and published by Springer Science & Business Media. This book was released on 2005-06-09 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Physics: Confinement, Transport and Collective Effects provides an overview of modern plasma research with special focus on confinement and related issues. Beginning with a broad introduction, the book leads graduate students and researchers – also those from related fields - to an understanding of the state-of-the-art in modern plasma physics. Furthermore, it presents a methodological cross section ranging from plasma applications and plasma diagnostics to numerical simulations, the latter providing an increasingly important link between theory and experiment. Effective references guide the reader from introductory texts through to contemporary research. Some related exercises in computational plasma physics are supplied on a special web site
Download or read book Plasma Physics and Engineering written by Alexander Fridman and published by CRC Press. This book was released on 2004-04-15 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. An essential tool for understanding this dynamic field, Plasma Physics and Engineering provides a clear, fundamental introduction to virtually all aspects of modern plasma science and technology, including plasma chemistry and engineering, combustion, chemical physics, lasers, electronics, methods of material treatment, fuel conversion, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, many helpful numerical formulas for practical calculations, and an array of problems and concept questions.
Download or read book Plasma Physics and Fusion Energy written by Jeffrey P. Freidberg and published by Cambridge University Press. This book was released on 2008-07-10 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.
Download or read book Nonlinear Physics of Plasmas written by Mitsuo Kono and published by Springer Science & Business Media. This book was released on 2010-10-17 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Download or read book Introduction to Plasma Physics written by R.J Goldston and published by CRC Press. This book was released on 2020-07-14 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Download or read book Plasma Physics Theory written by A. Sitenko and published by CRC Press. This book was released on 1994-12-01 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the field of modern plasma physics theory. The topics have been carefully chosen by the authors after many years teaching a graduate course in this subject. The book contains a comprehensive description of three widely used models in plasma physics: one-particle, hydro-dynamic and kinetic. The original results concerning fluctuation theory, nonlinear wave interaction and plasma turbulence have been obtained within the framework of the kinetic approach. This volume will be of particular interest to graduate students and researchers studying plasma physics as well as statistical physics and magnetohydrodynamics. It will also be of use to students and researchers in physical astronomy, particularly in other space plasma physics such as solar physics and stellar structure. The elements of the kinetic theory of gases.
Download or read book Plasma Physics written by Kip S. Thorne and published by Princeton University Press. This book was released on 2021-06-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Relativity and Cosmology is an essential introduction to the subject, including remarkable recent advances. Written by award-winning physicists who have made fundamental contributions to the field and taught it for decades, the book differs from most others on the subject in important ways. It highlights recent transformations in our understanding of black holes, gravitational waves, and the cosmos; it emphasizes the physical interpretation of general relativity in terms of measurements made by observers; it explains the physics of the Riemann tensor in terms of tidal forces, differential frame dragging, and associated field lines; it presents an astrophysically oriented description of spinning black holes; it gives a detailed analysis of an incoming gravitational wave's interaction with a detector such as LIGO; and it provides a comprehensive, in-depth account of the universe's evolution, from its earliest moments to the present. While the book is designed to be used for a one-quarter or full-semester course, it goes deep enough to provide a foundation for understanding and participating in some areas of cutting-edge research. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter or one-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --
Download or read book Introduction to Plasma Physics and Controlled Fusion written by Francis F. Chen and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Download or read book Fusion Plasma Physics written by Weston M. Stacey and published by John Wiley & Sons. This book was released on 2012-10-15 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.
Download or read book Plasma Physics written by James E. Drummond and published by Courier Corporation. This book was released on 2013-09-26 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited collection of papers by pioneering experts was a standard text throughout the 1960s and 70s. A timeless introduction to foundations of plasma physics and a valuable source of historic context. 1961 edition.
Download or read book Modern Classical Physics written by Kip S. Thorne and published by Princeton University Press. This book was released on 2017-09-05 with total page 1551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available
Download or read book Quantum Plasmas written by Fernando Haas and published by Springer Science & Business Media. This book was released on 2011-08-27 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Download or read book Computational Methods in Plasma Physics written by Stephen Jardin and published by CRC Press. This book was released on 2010-06-02 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts neces
Download or read book Plasma Physics written by Alexander Piel and published by Springer. This book was released on 2018-05-18 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.
Download or read book The Physics of Plasmas written by T. J. M. Boyd and published by Cambridge University Press. This book was released on 2003-01-23 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Download or read book Introduction to Plasma Dynamics written by A. I. Morozov and published by CRC Press. This book was released on 2012-12-06 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the