Download or read book Models and Ultraproducts written by John Lane Bell and published by Courier Corporation. This book was released on 2006-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text for first-year graduate students, the authors provide an elementary exposition of some of the basic concepts of model theory--focusing particularly on the ultraproduct construction and the areas in which it is most useful. The book, which assumes only that its readers are acquainted with the rudiments of set theory, starts by developing the notions of Boolean algebra, propositional calculus, and predicate calculus. Model theory proper begins in the fourth chapter, followed by an introduction to ultraproduct construction, which includes a detailed look at its theoretic properties. An overview of elementary equivalence provides algebraic descriptions of the elementary classes. Discussions of completeness follow, along with surveys of the work of Jónsson and of Morley and Vaught on homogeneous universal models, and the results of Keisler in connection with the notion of a saturated structure. Additional topics include classical results of Gödel and Skolem, and extensions of classical first-order logic in terms of generalized quantifiers and infinitary languages. Numerous exercises appear throughout the text.
Download or read book Models and Ultraproducts written by A. B. Slomson and published by Dover Publications. This book was released on 2013-12-20 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first-year graduate text assumes only an acquaintance with set theory to explore homogeneous universal models, saturated structure, extensions of classical first-order logic, and other topics. 1974 edition.
Download or read book Model Theory written by and published by . This book was released on 1973 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Shorter Model Theory written by Wilfrid Hodges and published by Cambridge University Press. This book was released on 1997-04-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up-to-date textbook of model theory taking the reader from first definitions to Morley's theorem and the elementary parts of stability theory. Besides standard results such as the compactness and omitting types theorems, it also describes various links with algebra, including the Skolem-Tarski method of quantifier elimination, model completeness, automorphism groups and omega-categoricity, ultraproducts, O-minimality and structures of finite Morley rank. The material on back-and-forth equivalences, interpretations and zero-one laws can serve as an introduction to applications of model theory in computer science. Each chapter finishes with a brief commentary on the literature and suggestions for further reading. This book will benefit graduate students with an interest in model theory.
Download or read book Continuous Model Theory AM 58 Volume 58 written by Chen Chung Chang and published by Princeton University Press. This book was released on 2016-03-02 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a study of the theory of models with truth values in a compact Hausdorff topological space.
Download or read book The Theory of Ultrafilters written by W.W. Comfort and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ultrafilter is a truth-value assignment to the family of subsets of a set, and a method of convergence to infinity. From the first (logical) property arises its connection with two-valued logic and model theory; from the second (convergence) property arises its connection with topology and set theory. Both these descriptions of an ultrafilter are connected with compactness. The model-theoretic property finds its expression in the construction of the ultraproduct and the compactness type of theorem of Los (implying the compactness theorem of first-order logic); and the convergence property leads to the process of completion by the adjunction of an ideal element for every ultrafilter-i. e. , to the Stone-Cech com pactification process (implying the Tychonoff theorem on the compact ness of products). Since these are two ways of describing the same mathematical object, it is reasonable to expect that a study of ultrafilters from these points of view will yield results and methods which can be fruitfully crossbred. This unifying aspect is indeed what we have attempted to emphasize in the present work.
Download or read book The Theory of Models written by J.W. Addison and published by Elsevier. This book was released on 2014-05-27 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies in Logic and the Foundations of Mathematics: The Theory of Models covers the proceedings of the International Symposium on the Theory of Models, held at the University of California, Berkeley on June 25 to July 11, 1963. The book focuses on works devoted to the foundations of mathematics, generally known as "the theory of models." The selection first discusses the method of alternating chains, semantic construction of Lewis's systems S4 and S5, and continuous model theory. Concerns include ordered model theory, 2-valued model theory, semantics, sequents, axiomatization, formulas, axiomatic approach to hierarchies, alternating chains, and difference hierarchies. The text also ponders on Boolean notions extended to higher dimensions, elementary theories with models without automorphisms, and applications of the notions of forcing and generic sets. The manuscript takes a look at a hypothesis concerning the extension of finite relations and its verification for certain special cases, theories of functors and models, model-theoretic methods in the study of elementary logic, and extensions of relational structures. The text also reviews relatively categorical and normal theories, algebraic theories, categories, and functors, denumerable models of theories with extra predicates, and non-standard models for fragments of number theory. The selection is highly recommended for mathematicians and researchers interested in the theory of models.
Download or read book Institution independent Model Theory written by Razvan Diaconescu and published by Springer Science & Business Media. This book was released on 2008-08-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops model theory independently of any concrete logical system or structure, within the abstract category-theoretic framework of the so called ‘institution theory’. The development includes most of the important methods and concepts of conventional concrete model theory at the abstract institution-independent level. Consequently it is easily applicable to a rather large diverse collection of logics from the mathematical and computer science practice.
Download or read book Logic of Mathematics written by Zofia Adamowicz and published by John Wiley & Sons. This book was released on 2011-09-26 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Download or read book Hilbert s Fifth Problem and Related Topics written by Terence Tao and published by American Mathematical Soc.. This book was released on 2014-07-18 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.
Download or read book Toposes and Local Set Theories written by John L. Bell and published by Courier Corporation. This book was released on 2008-01-01 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
Download or read book A Primer of Infinitesimal Analysis written by John L. Bell and published by Cambridge University Press. This book was released on 2008-04-07 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Download or read book A Functorial Model Theory written by Cyrus F. Nourani and published by CRC Press. This book was released on 2016-04-19 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
Download or read book Model Theory An Introduction written by David Marker and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Download or read book A Course in Model Theory written by Katrin Tent and published by Cambridge University Press. This book was released on 2012-03-08 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise introduction to current topics in model theory, including simple and stable theories.
Download or read book Classification Theory written by S. Shelah and published by Elsevier. This book was released on 1990-12-06 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this research monograph, the author's work on classification and related topics are presented. This revised edition brings the book up to date with the addition of four new chapters as well as various corrections to the 1978 text.The additional chapters X - XIII present the solution to countable first order T of what the author sees as the main test of the theory. In Chapter X the Dimensional Order Property is introduced and it is shown to be a meaningful dividing line for superstable theories. In Chapter XI there is a proof of the decomposition theorems. Chapter XII is the crux of the matter: there is proof that the negation of the assumption used in Chapter XI implies that in models of T a relation can be defined which orders a large subset of m
Download or read book Introduction to Model Theory written by Philipp Rothmaler and published by CRC Press. This book was released on 2018-12-07 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.