EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Practical Applications of Time lapse Seismic Data

Download or read book Practical Applications of Time lapse Seismic Data written by David H. Johnston and published by SEG Books. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.

Book Time lapse Seismic Modeling for CO2 Sequestration at the Dickman Field  Kansas

Download or read book Time lapse Seismic Modeling for CO2 Sequestration at the Dickman Field Kansas written by Jintan Li and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic modeling is often used to study hydrocarbon reservoirs, especially for those undergoing injection or production. The Dickman field, Kansas, provides two possible CO2 sequestration targets: a regional deep saline reservoir (the primary objective) and a shallower mature, depleted oil reservoir (secondary). The work in this dissertation characterizes and simulates monitoring of CO2 movement before, during, and after injection including fluid flow paths, reservoir property changes, CO2 containment, and post-injection stability. My seismic simulation for time-lapse CO2 monitoring was based on flow simulator output over a 50-year injection and 250-year simulation period. This work introduces a feasible and reliable regridding technique that resolves different scales from geological modeling, flow simulation, to seismic modeling for a realistic carbonate geological model. Gassmann fluid substitution theory is applied to calculate fluid properties changes before and after injection. For a porous Mississippian carbonate reservoir with average 25% porosity, the P wave velocity can change around 15% with CO2 saturation up to 84%. Seismic simulation was accomplished via PP and PS reflectivity from the Zoeppritz equation, convolutional (1D), acoustic and elastic (2D) finite difference modeling by a flux-corrected transport equation. This work assesses the effectiveness of 4D seismic monitoring in the evaluation of long-term CO2 containment stability through a fault leakage test. A CO2 plume can be detected from the difference on seismic sections with 5 to 10ms time shift at the storage site before and after injection, and was validated by comparison with the prestack field data. Time-lapse flow to seismic modeling is proved to be useful for carbon dioxide sequestration in a hard rock carbonate reservoir.

Book Time lapse Seismic Modeling and Production Data Assimilation for Enhanced Oil Recovery and CO2 Sequestration

Download or read book Time lapse Seismic Modeling and Production Data Assimilation for Enhanced Oil Recovery and CO2 Sequestration written by Ajitabh Kumar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Production from a hydrocarbon reservoir is typically supported by water or carbon dioxide (CO2) injection. CO2 injection into hydrocarbon reservoirs is also a promising solution for reducing environmental hazards from the release of green house gases into the earth0́9s atmosphere. Numerical simulators are used for designing and predicting the complex behavior of systems under such scenarios. Two key steps in such studies are forward modeling for performance prediction based on simulation studies using reservoir models and inverse modeling for updating reservoir models using the data collected from field. The viability of time-lapse seismic monitoring using an integrated modeling of fluid flow, including chemical reactions, and seismic response is examined. A comprehensive simulation of the gas injection process accounting for the phase behavior of CO2-reservoir fluids, the associated precipitation/dissolution reactions, and the accompanying changes in porosity and permeability is performed. The simulation results are then used to model the changes in seismic response with time. The general observation is that gas injection decreases bulk density and wave velocity of the host rock system. Another key topic covered in this work is the data assimilation study for hydrocarbon reservoirs using Ensemble Kalman Filter (EnKF). Some critical issues related to EnKF based history matching are explored, primarily for a large field with substantial production history. A novel and efficient approach based on spectral clustering to select 0́optimal0́9 initial ensemble members is proposed. Also, well-specific black-oil or compositional streamline trajectories are used for covariance localization. Approach is applied to the Weyburn field, a large carbonate reservoir in Canada. The approach for optimal member selection is found to be effective in reducing the ensemble size which was critical for this large-scale field application. Streamline-based covariance localization is shown to play a very important role by removing spurious covariances between any well and far-off cell permeabilities. Finally, time-lapse seismic study is done for the Weyburn field. Sensitivity of various bulk seismic parameters viz velocity and impedance is calculated with respect to different simulation parameters. Results show large correlation between porosity and seismic parameters. Bulk seismic parameters are sensitive to net overburden pressure at its low values. Time-lapse changes in pore-pressure lead to changes in bulk parameters like velocity and impedance.

Book Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

Download or read book Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO2 injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO2 plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO2 sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO2 injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO2 was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO2 injection and a fully saturated CO2 fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO2 to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

Book Numerical Modeling of Time lapse Seismic Experiments to Monitor Carbon Dioxide Sequestration in a Layered Basalt Reservoir

Download or read book Numerical Modeling of Time lapse Seismic Experiments to Monitor Carbon Dioxide Sequestration in a Layered Basalt Reservoir written by Murari Khatiwada and published by . This book was released on 2009 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

Download or read book Application of Time Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations', investigated the potential for monitoring CO2 floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO2 through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO2 monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO2. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO2 injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO2 was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO2, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO2 injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO2 was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO2 sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

Book Time Lapse Approach to Monitoring Oil  Gas  and CO2 Storage by Seismic Methods

Download or read book Time Lapse Approach to Monitoring Oil Gas and CO2 Storage by Seismic Methods written by Junzo Kasahara and published by Gulf Professional Publishing. This book was released on 2016-10-14 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Lapse Approach to Monitoring Oil, Gas, and CO2 Storage by Seismic Methods delivers a new technology to geoscientists, well logging experts, and reservoir engineers, giving them a new basis on which to influence decisions on oil and gas reservoir management. Named ACROSS (Accurately Controlled and Routinely Operated Signal System), this new evaluation method is presented to address more complex reservoirs, such as shale and heavy oil. The book also discusses prolonged production methods for enhanced oil recovery. The monitoring of storage zones for carbon capture are also included, all helping the petroleum and reservoir engineer to fully extend the life of a field and locate untapped pockets of additional oil and gas resources. Rounded out with case studies from locations such as Japan, Saudi Arabia, and Canada, this book will help readers, scientists, and engineers alike to better manage the life of their oil and gas resources and reservoirs. Benefits both geoscientists and reservoir engineers to optimize complex reservoirs such as shale and heavy oil Explains a more accurate and cost efficient reservoir monitoring technology called ACROSS (Accurately Controlled and Routinely Operated Signal System) Illustrates real-world application through multiple case studies from around the world

Book A Reduced order Basis Approach for CO2 Monitoring from Sparse Time lapse Seismic Data

Download or read book A Reduced order Basis Approach for CO2 Monitoring from Sparse Time lapse Seismic Data written by Badr Waleed A Alrumaih and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: I present an approach for seismic monitoring from sparse time-lapse data, with a particular focus on leak detection from CO2 storage reservoirs. I use sparse data because it is (1) faster and (2) less expensive to acquire and to process, permitting for more frequent monitoring surveys to be carried out. This would allow for (1) early leak detection, which is what we ultimately aim for at a storage site, and (2) timely assessment of performance conformance. To account for data sparsity, I incorporate information on the underlying (injection) process (pressure and flow) into the geophysical model estimation. By process information, I mean how the geophysical model is possibly or potentially perturbed due to CO2 injection, as governed by the physics of the flow and the rock properties model. I do that by reformulating the geophysical minimization problem with Reduced-Order Basis (ROB) functions that are derived from simulated training images stochastically describing how the geophysical model is perturbed by the CO2 injection including leak possibilities, which I will refer to as ROB-inversion. Naturally, reducing the spatial sampling of the acquired data leads to reduced spatial resolution of the reconstructed subsurface model. This is the tradeoff for the increased calendar-time resolution, i.e., the shorter monitoring calendar-time interval. By reformulating the geophysical minimization problem with the process-derived reduced-order basis functions, I can improve the spatial resolution of the subsurface model—leading to approximate (or reduced-order) models. The accuracy of the reduced-order models depends on how representative the training image set is to the true model change. A key point in my implementation is the formulation of the problem in terms of the changes in model and data—not in terms of model and data. This (1) focuses the inversion on the model change, making it easy to apply restrictions and limitations on the model change during seismic inversion; the ROB-inversion essentially restricts the model change to be in terms of the (process-derived) Reduced-Order Basis functions. Furthermore, it (2) allows for the training images to be defined explicitly in terms of the time-lapse changes to the baseline model. The change is generally constrained—by the physics of the flow and the rock properties model, making a representative training image set to be reasonably attainable. An advantage of my approach over existing sparse time-lapse techniques is that it allows for fixed data acquisition configurations over calendar-time. Hence, the cost and turn-around time associated with redeployment of seismic data acquisition equipment can be minimized. In order to demonstrate my approach, I focus on borehole-based monitoring, namely, crosswell data acquisition geometry; nevertheless, it can be adapted to other geometries (surface-based or borehole-based) and other geophysical data (e.g., resistivity, electromagnetic, etc.). It can also be adapted for monitoring other processes, such as assessing the performance of Improved Oil Recovery (IOR). In this thesis, I demonstrate the practicability of my approach on synthetic and field traveltime crosswell datasets. I show, with synthetic and field data, its effectiveness for leak detection during CO2 injection.

Book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes

Download or read book Numerical Modeling of Time lapse Seismic Data from Fractured Reservoirs Including Fluid Flow and Geochemical Processes written by Ravi Shekhar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured reservoirs, especially in low permeable carbonate rocks, are important target for hydrocarbon exploration and production because fractures can control fluid flow inside the reservoir. Hence, quantitative knowledge of fracture attributes is important for optimal hydrocarbon production. However, in some cases fractures can cause leakage of injected CO2 during enhanced oil recovery (EOR) or CO2 sequestration. Furthermore, CO2 can geochemically interact with reservoir fluids and host rock. Hence, time-lapse monitoring of the progress of CO2 in fractured reservoirs is also very important. In order to address these challenges, I have developed an integrated approach for studying fluid flow and seismic wave propagation in fractured media using Discrete Fracture Network (DFN) models. My seismic simulation study suggests that CO2 saturated reservoir shows approximately ten times more attenuation than brine saturated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My modeling study suggests that intra-aqueous reactions are more significant during injection of CO2 for t = 6 years, while slower mineral reactions dominate after pressure equilibrium is achieved that is from t = 6 to 1000 years. Overall both types of geochemical reactions cause change in reflection coefficient of 2 to 5%, which may be difficult to detect in some cases. However, the significant change in the seismic properties at the boundary of the CO2 front can be used to detect the flow path of CO2 inside the reservoirs. Finally, a method for generating stochastic fracture models was extended and improved to more realistic field model for seismic and fluid modeling. My detail analysis suggests that fractures generated by isotropic stress field favor orthogonal sets of fractures in most subsurface rocks that can be converted to seismic model, similar to DFN study. The quality and validity of the models is assessed by comparisons to DFN models, including calculations of fractal dimension measures that can help to characterize fractured reservoirs.

Book Time lapse Seismic Monitoring for Enhanced Oil Recovery and Carbon Capture and Storage Field Site at the Cranfield Field  Mississippi

Download or read book Time lapse Seismic Monitoring for Enhanced Oil Recovery and Carbon Capture and Storage Field Site at the Cranfield Field Mississippi written by Julie Nicole Ditkof and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cranfield field, located in southwest Mississippi, is an enhanced oil recovery and carbon sequestration project that has been under a continuous supercritical CO2 injection by Denbury Onshore LLC since 2008. Two 3D seismic surveys were collected in 2007, pre-CO2 injection, and in 2010 after > 2 million tons of CO2 was injected into the subsurface. The goal of this study is to characterize a time-lapse response between two seismic surveys to understand where injected CO2 is migrating and to map the injected CO2 plume edge. In order to characterize a time-lapse response, the seismic surveys were cross equalized using a trace-by-trace time shift. A normalized root-mean-square (NRMS) difference value was then calculated to determine the repeatability of the data. The data were considered to have "good repeatability," so a difference volume was calculated and showed a coherent seismic amplitude anomaly located through the area of interest. A coherent seismic amplitude anomaly was also present below the area of interest, so a time delay analysis was performed and calculated a significant added velocity change. A Gassmann-Wood fluid substitution workflow was then performed at two well locations to predict a saturation profile and observe post-injection expected changes in compressional velocity values at variable CO2 saturations. Finally, acoustic impedance inversions were performed on the two seismic surveys and an acoustic impedance difference volume was calculated to compare with the fluid substitution results. The Gassmann-Wood fluid substitution results predicted smaller changes in acoustic impedance than those observed from acoustic impedance inversions. At the Cranfield field, time-lapse seismic analysis was successful in mapping and quantifying the acoustic impedance change for some seismic amplitude anomalies associated with injected CO2. Additional well log data and refinement of the fluid substitution workflow and the model-based inversion performed is necessary to obtain more accurate impedance changes throughout the field instead of at a single well location.

Book TIME LAPSE SEISMIC MODELING   INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

Download or read book TIME LAPSE SEISMIC MODELING INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY written by Mark A. Meadows and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

Book Coda wave Interferometry Analysis of Time lapse VSP Data for Monitoring Geological Carbon Sequestration

Download or read book Coda wave Interferometry Analysis of Time lapse VSP Data for Monitoring Geological Carbon Sequestration written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection and movement/saturation of carbon dioxide (CO2) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO2-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO2 in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO2 injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO2 reservoir. Our results from field data suggest that the velocity changes caused by CO2 injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration.

Book Time lapse Seismic Monitoring of Subsurface Fluid Flow

Download or read book Time lapse Seismic Monitoring of Subsurface Fluid Flow written by Sung H. Yuh and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection. Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.