EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling of Stripper Configurations for CO2 Capture Using Aqueous Piperazine

Download or read book Modeling of Stripper Configurations for CO2 Capture Using Aqueous Piperazine written by Tarun Madan and published by . This book was released on 2013 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis seeks to improve the economic viability of carbon capture process by reducing the energy requirement of amine scrubbing technology. High steam requirement for solvent regeneration in this technology can be reduced by improvements in the regeneration process. Solvent models based on experimental results have been created by previous researchers and are available for simulation and process modeling in Aspen Plus®. Standard process modeling specifications are developed and multiple regeneration processes are compared for piperazine (a cyclic diamine) in Chapter 2. The configurations were optimized to identify optimal operating conditions for energy performance. These processes utilize methods of better heat recovery and effective separation and show 2 to 8% improvement in energy requirement as compared to conventional absorber-stripper configuration. The best configuration is the interheated stripper which requires equivalent work of 29.9 kJ/mol CO2 compared to 32.6 kJ/mol CO2 for the simple stripper. The Fawkes and Independence solvent models were used for modeling and simulation. A new regeneration configuration called the advanced flash stripper (patent pending) was developed and simulated using the Independence model. Multiple complex levels of the process were simulated and results show more than 10% improvement in energy performance. Multiple cases of operating conditions and process specifications were simulated and the best case requires equivalent work of 29 kJ/mol CO2. This work also includes modeling and simulation of pilot plant campaigns carried out for demonstration of a piperazine with a 2-stage flash on at 1 tpd CO2. Reconciliation of data was done in Aspen Plus for solvent model validation. The solvent model predicted results consistent with the measured values. A systematic error of approximately +5% was found in the rich CO2, that can be attributed to laboratory measurement errors, instrument measurement errors, and standard deviation in solvent model data. Stripper Modeling for CO2 capture from natural gas combustion was done under a project by TOTAL through the Process Science and Technology Center. Two configurations were simulated for each of three flue gas conditions (corresponding to 3%, 6% and 9% CO2). Best cases for the three conditions of flue gas require 34.9, 33.1 and 31.6 kJ/mol CO2.

Book Modeling of Strippers for CO2 Capture by Aqueous Amines

Download or read book Modeling of Strippers for CO2 Capture by Aqueous Amines written by Babatunde Adegboyega Oyenekan and published by . This book was released on 2007 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work evaluates stripper performance for CO2 capture using seven potential solvent formulations and seven stripper configurations. Equilibrium and rate models were developed in Aspen Custom Modeler (ACM). The temperature approach on the hot side of the cross exchanger was varied between 5 - 10°C. The results show that operating the cross exchanger at a 5°C approach results in 12% energy savings for a 7m MEA rich solution of 0.563 mol/mol Alk and 90% CO2 removal. For solvents with [Delta]H[subscript abs]

Book Modeling of Carbon Dioxide Absorption stripping by Aqueous Methyldiethanolamine piperazine

Download or read book Modeling of Carbon Dioxide Absorption stripping by Aqueous Methyldiethanolamine piperazine written by Peter Thompson Frailie (II) and published by . This book was released on 2014 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous thermodynamic and kinetic models were developed in Aspen Plus® Rate SepTM for 8 m PZ, 5 m PZ, 7 m MDEA/2 m PZ, and 5 m MDEA/5 m PZ. Thermodynamic data was regressed using a sequential regression methodology, and incorporated data for all amine, amine/water, and amine/water/CO2 systems. The sensitivity of CO2 absorption rate was determined in a wetted wall column simulation in Aspen Plus®, and the results were used in Microsoft Excel to determine the optimum reaction rates, activation energies, and binary diffusivities. Density, viscosity, and binary diffusivity are calculated using user-supplied FORTRAN subroutines rather than built-in Aspen Plus® correlations. Three absorber configurations were tested: adiabatic, in-and-out intercooling, and pump-around intercooling. The two intercooled configurations demonstrated comparable improvement in capacity and packing area, with the greatest improvement in 8 m PZ occurring between lean loadings of 0.20 and 0.25 mol CO2/mol alkalinity. The effects of absorber temperature and CO2 removal were tested in the adiabatic and in-and-out intercooled configurations. For 7 m MDEA/2 m PZ at a lean loading of 0.13 mol CO2/mol alkalinity reducing the absorber temperature from 40 °C to 20 °C increases capacity by 64% without an appreciable increase in packing area. Increasing CO2 removal from 90% to 99% does not double the packing area due to favorable reaction rates at the lean end of the absorber. Two stripper configurations were tested: the simple stripper and the advanced flash stripper. For all amines, absorber configurations, and lean loadings the advanced flash stripper demonstrated the better energy performance, with the greatest benefit occurring at low lean loadings. An economic estimation method was developed that converts purchased equipment cost and equivalent work to $/MT CO2. The method is based on economic factors proposed by DOE-NETL and IEAGHG. The total cost of CO2 decreases as lean loading decreases for all amines and configurations. Increasing CO2 removal from 90% to 99% results in a 1% increase in the total cost of CO2 capture. Decreasing absorber temperature for 7 m MDEA/2 m PZ from 40 °C to 20 °C decreases total cost of CO2 capture by up to 9.3%.

Book Modeling Advanced Flash Stripper for Carbon Dioxide Capture Using Aqueous Amines

Download or read book Modeling Advanced Flash Stripper for Carbon Dioxide Capture Using Aqueous Amines written by Yu-Jeng Lin and published by . This book was released on 2016 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intensive energy use is the major obstacle to deployment of CO2 capture. Alternative stripper configurations is one of the most promising ways to reduce the energy consumption of CO2 regeneration and compression. The advanced flash stripper (AFS) proposed in this work provides the best energy performance among other alternatives. A systematic irreversibility analysis was performed instead of examining all the possible alternatives. The overhead condenser and the cross exchanger were identified the major sources of lost work that causes process inefficiencies. The AFS reduces the reboiler duty by 16% and the total equivalent work by 11% compared to the simple stripper using aqueous piperazine. The AFS was demonstrated in a 0.2 MW equivalent pilot plant and showed over 25% of heat duty reduction compared to previous campaigns, achieving 2.1 GJ/tonne CO2 of heat duty and 32 kJ/mol CO2 of total equivalent work. The proposed bypass control strategy was successfully demonstrated and minimized the reboiler duty. Approximate stripper models (ASM) were developed to generalize the effect of solvent properties on energy performance and guide solvent selections. High heat of absorption can increase partial pressure of CO2 at elevated temperature and has potential to reduce compression work and stripping steam heat. The optimum heat of absorption was quantified as 70–125 kJ/mol CO2 at various conditions, which is generally higher than existing amines with 60–80 kJ/mol. The energy performance of AFS is not sensitive to the heat of absorption. A techno-economic analysis with process optimization that minimizes the annualized regeneration cost was performed to demonstrate the profitability of the AFS. The AFS reduces the annualized regeneration cost by 13% and the major savings come from the reduction of the OPEX, which counts for over 70% of the regeneration cost. The compressor and the cross exchanger are the major components of the CAPEX. The optimum lean loading is around 0.22 mol CO2/mol alkalinity for PZ but is flat between 0.18 and 0.24 with less than 1% difference. The AFS was demonstrated as a flexible system that can be applied to a wide range of solvent properties and operating conditions while still maintaining remarkable energy performance. Further improvement of energy efficiency by process modifications is expected to be marginal. Increasing solvent capacity will give the most energy and cost reduction in the future.

Book Stripper Modeling for CO2 Removal Using Monoethanolamine and Piperazine Solvents

Download or read book Stripper Modeling for CO2 Removal Using Monoethanolamine and Piperazine Solvents written by David Hamilton Van Wagener and published by . This book was released on 2011 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation seeks to reduce the energy consumption of steam stripping to regenerate aqueous amine used for CO2 capture from coal-fired power plants. Rigorous rate-based models in Aspen Plus® were developed, and rate-based simulations were used for packed vapor/liquid separation units. Five main configurations with varying levels of complexity were evaluated with the two solvents. 8 m piperazine (PZ) always performed better than 9 m monoethanolamine (MEA). More complex flowsheets stripped CO2 with higher efficiency due to the more reversible separation. Multi-stage flash configurations were competitive at their optimal lean loadings, but they had poor efficiency at low lean loading. The most efficient configuration was an interheated column, with more effective and distributed heat exchange. It had a secondary benefit of a cooler overhead temperature, so less water vapor exited with the CO2. Using a rich loading of 0.40 mol CO2/mol alkalinity in 8 m PZ, the optimal lean loading was 0.28 and the energy requirement was 30.9 kJ/mol CO2. Case studies were also performed on cold rich bypass and the use of geothermal heat. When cold rich bypass is used with the 2-stage flash and 8 m PZ, it reduces equivalent work by 11% to 30.7 kJ/mol CO2. PZ benefited the most from cold rich bypass because it had a higher water concentration in the overhead vapor than with MEA. In an advanced 2-stage flash with 8 m PZ, geothermal heat available from 150 down to 100 °C requires 35.5 kJ work/mol CO2. The heat duty and equivalent work was higher than other optimized configurations, but it would be a valid option if separating the heat source from the steam cycle of a coal-fired power plant was highly valued. Pilot plant campaigns were simulated with the available thermodynamic models. Two campaigns with 8 m PZ were simulated within small deviation from the measured values. The average absolute errors in these campaigns were 2.5 and 2.7%. A campaign with 9 m MEA in a simple stripper demonstrated that the MEA model did not predict the solvent properties well enough to appropriately represent the pilot plant operation.

Book Modeling the Advanced Flash Stripper for CO2 Capture Using 5 M Piperazine

Download or read book Modeling the Advanced Flash Stripper for CO2 Capture Using 5 M Piperazine written by Junyuan Ding and published by . This book was released on 2016 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amine scrubbing is the most mature technology for post-combustion CO2 capture. Several studies have demonstrated that the advanced flash stripper (AFS) consumes less energy among stripper alternatives. This thesis seeks to demonstrate the AFS energy performance and cost over a wide range of CO2 loading. Solvent models based on experimental results have been created by previous researchers and are available for simulation and process modeling in Aspen Plus®. In collaboration with Membrane Technology and Research Inc., various hybrid amine/membrane configurations were studied to minimize the total CO2 capture cost. CO2 in the flue gas is enriched by membranes from 12% to 18 and 23% for coal-fired power plant, and from 6% to 12~18% for natural gas combined cycle power plant (NGCC). The CO2 loading covers the range of flue gas CO2 from coal-fired power plants and NGCC. For each configuration, the cold and warm rich bypasses are optimized to minimize the energy cost. The cost optimization is also demonstrated on 5 m PZ, 5 m MDEA/5 m PZ, and 2 m PZ/3 m HMPD. The most cost-effective solvent varies with the flue gas CO2. When applied to a coal-fired power plant, hybrid parallel amine/membrane designs with 99% and 95% CO2 removal cost less than hybrid series with 60% CO2 removal. The equivalent work of the parallel configuration with 99% CO2 removal using 5 m MDEA/5 m PZ (32.3 kJ/mol CO2) is less than using 5 m PZ (34.0 kJ/mol CO2). The equivalent work with 95% CO2 removal (Case 19) using 5 m MDEA/5 m PZ (32.5 kJ/mol CO2) is less than using 5 m PZ (33.3 kJ/mol CO2). The capital cost with 99% CO2 removal using 5 m MDEA/5 m PZ ($70.5MM) is more than using 5 m PZ ($67.5MM). The capital cost with 95% CO2 removal using 5 m MDEA/5 m PZ ($73.5MM) is less than using 5 m PZ ($79.5MM). The total annual cost with 95% CO2 removal using 2 m PZ/3 m HMPD ($38.7/tonne CO2) is less than using 5 m PZ ($41.5/tonne CO2). When applied to NGCC, the cost of amine scrubbing is reduced by increasing absorber inlet CO2 by membranes. However, this is offset by the membrane cost. As absorber inlet CO2 increases from 6% to 18%, the operating cost decreases from $18.8 to $15.4/tonne CO2, while total regeneration cost decreases from $35.6 to $33.1/tonne CO2.

Book Absorber Performance and Configurations for CO2 Capture Using Aqueous Piperazine

Download or read book Absorber Performance and Configurations for CO2 Capture Using Aqueous Piperazine written by Darshan Jitendra Sachde and published by . This book was released on 2016 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absorber design for CO2 capture with amine solvents is complicated by the presence of temperature gradients and multiple rate controlling mechanisms (chemical reaction and convective mass transfer). The development of rigorous rate-based models has created the opportunity to study the performance limiting mechanisms in detail. A structured approach was developed to validate absorber models, identify limiting phenomena, and develop configurations that specifically address limiting mechanisms. A rate-based model utilizing concentrated aqueous piperazine (PZ) was the focus of model validation and process development. The model was validated using pilot plant data, matching the number of transfer units (NTU) within + 1% while identifying a systematic bias (loading measurement) between the model and pilot plant data. The validated model was used to define limiting cases (isothermal and adiabatic absorbers) to study the effects of operating conditions on the formation of temperature-induced mass transfer pinches. The method allowed for screening of intercooling benefits – high CO2 applications (15% - 27% CO2) require intercooling over the entire practical loading range for PZ and benefit significantly from simple in-and-out intercooling with limited additional benefit expected from advanced design. Low CO2 (4% CO2) applications are expected to benefit the most from improved intercooling, but also have the largest operating window without the need for intercooling (

Book Post combustion CO2 Capture Technology

Download or read book Post combustion CO2 Capture Technology written by Helei Liu and published by Springer. This book was released on 2018-09-25 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the latest information on all aspects of the post-combustion carbon capture process. It provides designers and operators of amine solvent-based CO2 capture plants with an in-depth understanding of the most up-to-date fundamental chemistry and physics of the CO2 absorption technologies using amine-based reactive solvents. Topics covered include the physical properties, chemical analysis, reaction kinetics, CO2 solubility, and innovative configurations of absorption and stripping columns as well as information on technology applications. This book also examines the post-build operational issues of corrosion prevention and control, solvent management, solvent stability, solvent recycling and reclaiming, intelligent monitoring and plant control including process automation. In addition, the authors discuss the recent insights into the theoretical basis of plant operation in terms of thermodynamics, transport phenomena, chemical reaction kinetics/engineering, interfacial phenomena, and materials. The insights provided help engineers, scientists, and decision makers working in academia, industry and government gain a better understanding of post-combustion carbon capture technologies.

Book Process Systems and Materials for CO2 Capture

Download or read book Process Systems and Materials for CO2 Capture written by Athanasios I. Papadopoulos and published by John Wiley & Sons. This book was released on 2017-03-28 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.

Book Modeling of Carbon Dioxide Absorption Using Aqueous Monoethanolamine  Piperazine and Promoted Potassium Carbonate

Download or read book Modeling of Carbon Dioxide Absorption Using Aqueous Monoethanolamine Piperazine and Promoted Potassium Carbonate written by Jorge Mario Plaza and published by . This book was released on 2012 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigorous CO2 absorption models were developed for aqueous 4.5 m K+/4.5 m PZ, monoethanolamine (7m - 9m), and piperazine (8m) in Aspen Plus® RateSepTM. The 4.5 m K+/4.5 m PZ model uses the Hilliard thermodynamic representation and kinetics based on work by Chen. The MEA (Phoenix) and PZ (5deMayo) models incorporate new data for partial pressure of CO2 vs. loading and kinetics from wetted wall column data. They use reduced reaction sets based on the more relevant species present at the expected operating loading. Kinetics were regressed to match reported carbon dioxide flux data using a wetted wall column (WWC). Density and viscosity were satisfactorily regressed to match newly obtained experimental data. The activity coefficient of CO2 was also regressed to include newly obtained CO2 solvent solubility data. The models were reconciled and validated using pilot plant data obtained from five campaigns conducted at the Pickle Research Center. Performance was matched within 10% of NTU for most runs. Temperature profiles are adequately represented in all campaigns. The calculated temperature profiles showed the effect of the L/G on the location and magnitude of the temperature bulge. As the L/G is increased the temperature bulge moves from near the top of the column towards the bottom and its magnitude decreases. Performance improvement due to intercooling was validated across the campaigns that evaluated this process option. Absorber intercooling was studied using various solvent rates (Lmin, 1.1 Lmin and 1.2 Lmin). It is most effective at the critical L/G where the temperature bulge without intercooling is in the middle of the column. In this case it will allow for higher absorption by reducing the magnitude of the bulge temperature. The volume of packing to get 90% removal with L/Lmin =1.1 at the critical L/G is reduced by 30% for 8m PZ. For MEA and a solvent flow rate of 1.1 Lmin packing volume is increased with intercooling at constant L/G. This increase is compensated by higher solvent loadings that suggest lower stripping energy requirements. The critical L/G is 4.3 for 8m PZ, 6.9 for 9m MEA and 4.1 for K+/PZ.

Book Exergy for A Better Environment and Improved Sustainability 2

Download or read book Exergy for A Better Environment and Improved Sustainability 2 written by Fethi Aloui and published by Springer. This book was released on 2018-08-22 with total page 1173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 2 focuses on applications and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on selected lectures from the Seventh International Exergy, Energy and Environmental Symposium (IEEES7-2015) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency". Applications are included that apply to the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book. Exergy for Better Environment and Sustainablity, Volume 2 will appeal to researchers, students, and professionals within engineering and the renewable energy fields.

Book Exergy for A Better Environment and Improved Sustainability 1

Download or read book Exergy for A Better Environment and Improved Sustainability 1 written by Fethi Aloui and published by Springer. This book was released on 2018-08-04 with total page 1443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 1 focuses on fundamentals in the field and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on selected lectures from the Seventh International Exergy, Energy and Environmental Symposium (IEEES7-2015) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency". Included are fundamental and historical coverage of the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book. Exergy for Better Environment and Sustainability, Volume 1 will appeal to researchers, students, and professionals within engineering and the renewable energy fields.

Book CO2 Capture by Absorption with Potassium Carbonate

Download or read book CO2 Capture by Absorption with Potassium Carbonate written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No. 40 dumped packing. Independent measurements of CO2 solubility give a CO2 loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

Book Process Systems and Materials for CO2 Capture

Download or read book Process Systems and Materials for CO2 Capture written by Athanasios I. Papadopoulos and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.

Book Carbon Capture and Storage

Download or read book Carbon Capture and Storage written by Mai Bui and published by Royal Society of Chemistry. This book was released on 2019-11-29 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will provide the latest global perspective on the role and value of carbon capture and storage (CCS) in delivering temperature targets and reducing the impact of global warming. As well as providing a comprehensive, up-to-date overview of the major sources of carbon dioxide emission and negative emissions technologies, the book also discusses technical, economic and political issues associated with CCS along with strategies to enable commercialisation.

Book The Principles of Chemical Equilibrium

Download or read book The Principles of Chemical Equilibrium written by Kenneth George Denbigh and published by Cambridge University Press. This book was released on 1981-03-26 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample Text