Download or read book Modeling and Simulating Cardiac Electrical Activity written by David J. Christini and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the topic of mathematical modeling of electrical activity in the heart, from molecular details of ionic channel dynamics to clinically derived patient-specific models. It discusses how cellular ionic models are formulated, introduces commonly used models and explains why there are so many different models available. The chapters cover modeling of the intracellular calcium handling that underlies cellular contraction as well as modeling molecular-level details of cardiac ion channels, and also focus on specialized topics such as cardiomyocyte energetics and signalling pathways. It is an excellent resource for experienced and specialised researchers in the field, but also biological scientists with a limited background in mathematical modelling and computational methods. Part of Biophysical Society-IOP series.
Download or read book Computing the Electrical Activity in the Heart written by Joakim Sundnes and published by Springer Science & Business Media. This book was released on 2007-06-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes mathematical models and numerical techniques for simulating the electrical activity in the heart. It gives an introduction to the most important models, followed by a detailed description of numerical techniques. Particular focus is on efficient numerical methods for large scale simulations on both scalar and parallel computers. The results presented in the book will be of particular interest to researchers in bioengineering and computational biology.
Download or read book Modeling and Simulating Cardiac Electrical Activity written by Trine Krogh-Madsen and published by Myprint. This book was released on 2020-12-03 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the topic of mathematical modeling of electrical activity in the heart, from molecular details of ionic channel dynamics to clinically derived patient-specific models. It discusses how cellular ionic models are formulated, introduces commonly used models and explains why there are so many different models available. The chapters cover modeling of the intracellular calcium handling that underlies cellular contraction as well as modeling molecular-level details of cardiac ion channels, and specialized topics such as cardiomyocyte energetics and signalling pathways. It is an excellent resource for experienced and specialized researchers in the field, but also biological scientists with a limited background in mathematical modelling and computational methods. Key Features Thorough introduction to the topic of mathematical modeling of electrical activity in the heart Focuses on use of experimental data in mathematical modeling, and on explanations rather than equations In addition to being experts in the field, the contributing authors are expert science communicators
Download or read book Mathematically Modelling The Electrical Activity Of The Heart From Cell To Body Surface And Back Again written by Andrew Pullan and published by World Scientific Publishing Company. This book was released on 2005-09-07 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad — it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.
Download or read book Computational Modeling and Simulation Examples in Bioengineering written by Nenad Filipovic and published by John Wiley & Sons. This book was released on 2021-12-14 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.
Download or read book Mathematically Modelling the Electrical Activity of the Heart written by Andrew J. Pullan and published by World Scientific. This book was released on 2005 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on modelling the electrical activity of the heart is an attempt to describe continuum based modelling of cardiac electrical activity from the cell level to the body surface (the forward problem), and back again (the inverse problem). Background anatomy and physiology is covered briefly to provide a suitable context for understanding the detailed modelling that is presented herein. The questions of what is mathematical modelling and why one would want to use mathematical modelling are addressed to give some perspective to the philosophy behind our approach. Our view of mathematical modelling is broad ? it is not simply about obtaining a solution to a set of mathematical equations, but includes some material on aspects such as experimental and clinical validation.
Download or read book Computational Partial Differential Equations written by Hans Petter Langtangen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Download or read book Bioelectromagnetism written by Jaakko Malmivuo and published by . This book was released on 1995 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text applies engineering science and technology to biological cells and tissues that are electrically conducting and excitable. It describes the theory and a wide range of applications in both electric and magnetic fields.
Download or read book Numerical Mathematics written by Alfio Quarteroni and published by Springer. This book was released on 2017-01-26 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.
Download or read book Functional Imaging and Modeling of the Heart written by Frank B. Sachse and published by Springer. This book was released on 2007-07-10 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2007, held in Salt Lake City, UT, USA in June 2007. The contributions describe both experimental and computational studies and cover topics such as imaging and image analysis, cardiac electrophysiology, electro- and magnetocardiography, cardiac mechanics and clinical application, imaging and anatomical modeling.
Download or read book Modeling Life written by Alan Garfinkel and published by Springer. This book was released on 2017-09-06 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Download or read book Functional Imaging and Modeling of the Heart written by Yves Coudière and published by Springer. This book was released on 2019-05-29 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 10th International Conference on Functional Imaging and Modeling of the Heart, held in Bordeaux, France, in June 2019. The 46 revised full papers were carefully reviewed and selected from 50 submissions. The focus of the papers is on following topics: Electrophysiology: mapping and biophysical modelling; Novel imaging tools and analysis methods for myocardial tissue characterization and remodeling; Biomechanics: modeling and tissue property measurements; Advanced cardiac image analysis tools for diagnostic and interventions.
Download or read book Functional Imaging and Modeling of the Heart written by Daniel B. Ennis and published by Springer Nature. This book was released on 2021-06-17 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Functional Imaging and Modeling of the Heart, which took place online during June 21-24, 2021, organized by the University of Stanford. The 65 revised full papers were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: advanced cardiac and cardiovascular image processing; cardiac microstructure: measures and models; novel approaches to measuring heart deformation; cardiac mechanics: measures and models; translational cardiac mechanics; modeling electrophysiology, ECG, and arrhythmia; cardiovascular flow: measures and models; and atrial microstructure, modeling, and thrombosis prediction.
Download or read book Electrocardiographic Imaging written by Maria S. Guillem and published by Frontiers Media SA. This book was released on 2020-04-17 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical activity in the myocardium coordinates the contraction of the heart, and its knowledge could lead to a better understanding, diagnosis, and treatment of cardiac diseases. This electrical activity generates an electromagnetic field that propagates outside the heart and reaches the human torso surface, where it can be easily measured. Classical electrocardiography aims to interpret the 12-lead electrocardiogram (ECG) to determine cardiac activity and support the diagnosis of cardiac pathologies such as arrhythmias, altered activations, and ischemia. More recently, a higher number of leads is used to reconstruct a more detailed quantitative description of the electrical activity in the heart by solving the so-called inverse problem of electrocardiography. This technique is known as ECG imaging. Today, clinical applications of ECG imaging are showing promising results in guiding a variety of electrophysiological interventions such as catheter ablation of atrial fibrillation and ventricular tachycardia. However, in order to promote the adoption of ECG imaging in the routine clinical practice, further research is required regarding more accurate mathematical methods, further scientific validation under different preclinical scenarios and a more extensive clinical validation
Download or read book Modeling Imaging of Bioelectrical Activity written by Bin He and published by Springer Science & Business Media. This book was released on 2010-07-03 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several decades, much progress has been made in understanding the mechanisms of electrical activity in biological tissues and systems, and for developing non-invasive functional imaging technologies to aid clinical diagnosis of dysfunction in the human body. The book will provide full basic coverage of the fundamentals of modeling of electrical activity in various human organs, such as heart and brain. It will include details of bioelectromagnetic measurements and source imaging technologies, as well as biomedical applications. The book will review the latest trends in the field and comment on the future direction in this fast developing line of research.
Download or read book Simulating Normal and Arrhythmic Dynamics From Sub Cellular to Tissue and Organ Level written by Hans Dierckx and published by Frontiers Media SA. This book was released on 2019-10-04 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: