EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book MODEL BASED CONTROL OF HYBRID ELECTRIC POWERTRAINS INTEGRATED WITH LOW TEMPERATURE COMBUSTION ENGINES

Download or read book MODEL BASED CONTROL OF HYBRID ELECTRIC POWERTRAINS INTEGRATED WITH LOW TEMPERATURE COMBUSTION ENGINES written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle's fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines (i) in series HEV and extended range electric vehicle (E-REV) architectures which decouple the engine from the drivetrain and allow the ICE to operate fully in a dedicated LTC mode, and (ii) a parallel HEV architecture to investigate optimum performance for fuel saving by utilizing electric torque assist level offered by e-motor. An electrified LTC-SI powertrain test setup is built at Michigan Technological University to develop the powertrain efficiency maps to be used in energy management control (EMC) framework. Three different types of Energy Management Control (EMC) strategies are developed. The EMC strategies encompass thermostatic rule-based control (RBC), offline (i.e., dynamic programing (DP) and pontryagin's minimum principal (PMP)), and online optimization (i.e., model predictive control (MPC)). The developed EMC strategies are then implemented on experimentally validated HEV powertrain model to investigate the powertrain fuel economy. A dedicated single-mode homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI) engines are integrated with series HEV powertrain. The results show up to 17.7% and 14.2% fuel economy saving of using HCCI and RCCI, respectively in series HEV compared to modern SI engine in the similar architecture. In addition, the MPC results show that sub-optimal fuel economy is achieved by predicting the vehicle speed profile for a time horizon of 70 sec. Furthermore, a multi-mode LTC-SI engine is integrated in both series and parallel HEVs. The developed multi-mode LTC-SI engine enables flexibility in combustion mode-switching over the driving cycle, which helps to improve the overall fuel economy. The engine operation modes include HCCI, RCCI, and SI modes. The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations. In the parallel HEV architecture, the results for the UDDS driving cycle show the maximum benefit of the multi-mode LTCSI engine is realized in the mild electrification level, where the LTC mode operating time increases dramatically from 5.0% in Plug-in Hybrid Electric Vehicle (PHEV) to 20.5% in mild HEV.

Book TEST SETUP DESIGN  EXPERIMENTATION  AND MODEL BASED CONTROL OF HYBRID ELECTRIC POWERTRAINS INTEGRATED WITH LOW TEMPERETURE COMBUSTION ENGINES

Download or read book TEST SETUP DESIGN EXPERIMENTATION AND MODEL BASED CONTROL OF HYBRID ELECTRIC POWERTRAINS INTEGRATED WITH LOW TEMPERETURE COMBUSTION ENGINES written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : Transportation sector accounts for 70% of the total U.S. petroleum use in 2014 [7]. Widespread use of petroleum-based fuels in conventional powertrains has led to high greenhouse gas emission (GHG). In this context, the automakers are required to decrease both GHG emission by reducing vehicular fuel consumption and use of alternative fuels. Powertrain electrification and use of fuel-efficient Internal Combustion Engine (ICE) provide a viable solution to reduce GHG and vehicular fuel consumption. Low Temperature Combustion (LTC) engines represent one of the state-of-the-art ICE technologies with the highest reported peak net indicated thermal efficiency as high as 53% [8]. However, LTC engines suffer from limited operating range and control complexity during ICE transients and mode switching. Integrating the LTC engines with Hybrid Electric Vehicle (HEV) provides an opportunity for i) reducing HEV fuel consumption, and ii) removing unnecessary LTC transients; thus, reducing LTC control complexity. This MS report intends to investigate challenges and fuel economy potential for LTC-HEV powertrains. Three different types of Energy Management Control (EMC) strategies are developed and implemented for LTC-HEV powertrains. The EMC strategies encompass thermostatic Rule-Based Control (RBC), offline, and online optimization policies including Dynamic Programing (DP) and Model Predictive Control (MPC), respectively. This research, concentrates on (i) mild HEV architecture integrated with LTC engine to decrease the engine transitions by using e-motor torque assist along with using optimal EMC strategies, and (ii) integrating the LTC engines in series HEV and E-REV architectures which decouples the engine from the drivetrain and allow the ICE to operate fully in a dedicated LTC mode. To verify the outcome of this project, a powertrain test setup is built atMichigan Technological University. The expected outcome from this MS research will be advanced model-based powertrain control strategies to minimize LTC transients, evaluate fuel economy advantage versus conventional ICEs, and finally facilitate implementation of this promising fuel-efficient LTC-HEV powertrain.

Book Hybrid Electric Power Train Engineering and Technology  Modeling  Control  and Simulation

Download or read book Hybrid Electric Power Train Engineering and Technology Modeling Control and Simulation written by Szumanowski, Antoni and published by IGI Global. This book was released on 2013-05-31 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybridization is an increasingly popular paradigm in the auto industry, but one that is not fully understood by car manufacturers. In general, hybrid electric vehicles (HEV) are designed without regard to the mechanics of the power train, which is developed similarly to its counterparts in internal combustion engines. Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation provides readers with an academic investigation into HEV power train design using mathematical modeling and simulation of various hybrid electric motors and control systems. This book explores the construction of the most energy efficient power trains, which is of importance to designers, manufacturers, and students of mechanical engineering. This book is part of the Research Essentials collection.

Book Introduction to Modeling and Control of Internal Combustion Engine Systems

Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Book Transient Effects in Simulations of Hybrid Electric Drivetrains

Download or read book Transient Effects in Simulations of Hybrid Electric Drivetrains written by Florian Winke and published by Springer. This book was released on 2018-05-31 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents an investigation of the influence of different modeling approaches on the quality of fuel economy simulations of hybrid electric powertrains. The main focus is on the challenge to accurately include transient effects and reduce the computation time of complex models. Methods for the composition of entire powertrain models are analyzed as well as the modeling of the individual components internal combustion engine and battery. The results shall help with the selection of suitable models for specific simulation tasks and provide a deeper understanding of the dynamic processes within simulations of hybrid electric vehicles. About the Author Florian Winke was research associate at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), where he worked on modeling and simulation of hybrid electric powertrains. After finishing his doctorate, he joined a German automotive manufacturer, where he is working in software development in the field of hybrid operation strategies.

Book Optimal Control of Hybrid Vehicles

Download or read book Optimal Control of Hybrid Vehicles written by Bram de Jager and published by Springer Science & Business Media. This book was released on 2013-04-05 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: • a control strategy for a micro-hybrid power train; • experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and • an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.

Book Transitions to Alternative Vehicles and Fuels

Download or read book Transitions to Alternative Vehicles and Fuels written by National Research Council and published by National Academies Press. This book was released on 2013-04-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.

Book Characteristics and Control of Low Temperature Combustion Engines

Download or read book Characteristics and Control of Low Temperature Combustion Engines written by Rakesh Kumar Maurya and published by Springer. This book was released on 2017-11-03 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with novel advanced engine combustion technologies having potential of high fuel conversion efficiency along with ultralow NOx and particulate matter (PM) emissions. It offers insight into advanced combustion modes for efficient utilization of gasoline like fuels. Fundamentals of various advanced low temperature combustion (LTC) systems such as HCCI, PCCI, PPC and RCCI engines and their fuel quality requirements are also discussed. Detailed performance, combustion and emissions characteristics of futuristic engine technologies such as PPC and RCCI employing conventional as well as alternative fuels are analyzed and discussed. Special emphasis is placed on soot particle number emission characterization, high load limiting constraints, and fuel effects on combustion characteristics in LTC engines. For closed loop combustion control of LTC engines, sensors, actuators and control strategies are also discussed. The book should prove useful to a broad audience, including graduate students, researchers, and professionals Offers novel technologies for improved and efficient utilization of gasoline like fuels; Deals with most advanced and futuristic engine combustion modes such as PPC and RCCI; Comprehensible presentation of the performance, combustion and emissions characteristics of low temperature combustion (LTC) engines; Deals with closed loop combustion control of advanced LTC engines; State-of-the-art technology book that concisely summarizes the recent advancements in LTC technology. .

Book Model Based Validation of Fuel Cell Hybrid Vehicle Control Systems

Download or read book Model Based Validation of Fuel Cell Hybrid Vehicle Control Systems written by Erik Wilhelm and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Hybrid Vehicle System Modeling and Control

Download or read book Introduction to Hybrid Vehicle System Modeling and Control written by Wei Liu and published by John Wiley & Sons. This book was released on 2013-02-08 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an engineering reference book on hybrid vehicle system analysis and design, an outgrowth of the author's substantial work in research, development and production at the National Research Council Canada, Azure Dynamics and now General Motors. It is an irreplaceable tool for helping engineers develop algorithms and gain a thorough understanding of hybrid vehicle systems. This book covers all the major aspects of hybrid vehicle modeling, control, simulation, performance analysis and preliminary design. It not only systemically provides the basic knowledge of hybrid vehicle system configuration and main components, but also details their characteristics and mathematic models. Provides valuable technical expertise necessary for building hybrid vehicle system and analyzing performance via drivability, fuel economy and emissions Built from the author's industry experience at major vehicle companies including General Motors and Azure Dynamics Inc. Offers algorithm implementations and figures/examples extracted from actual practice systems Suitable for a training course on hybrid vehicle system development with supplemental materials An essential resource enabling hybrid development and design engineers to understand the hybrid vehicle systems necessary for control algorithm design and developments.

Book Technologies and Approaches to Reducing the Fuel Consumption of Medium  and Heavy Duty Vehicles

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium and Heavy Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-07-30 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Book Energy Efficient Non Road Hybrid Electric Vehicles

Download or read book Energy Efficient Non Road Hybrid Electric Vehicles written by Johannes Unger and published by Springer. This book was released on 2016-02-10 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications that work in continuous high dynamic operation. It also provides practical insights into maximizing the energy efficiency and drivability of such powertrains. It introduces an energy-management control structure, which considers all the physical powertrain constraints and uses novel methodologies to predict the future load requirements to optimize the controller output in terms of the entire work cycle of a non-road vehicle. The load prediction includes a methodology for short-term loads as well as cycle detection methodology for an entire load cycle. In this way, the energy efficiency can be maximized, and fuel consumption and exhaust emissions simultaneously reduced. Readers gain deep insights into the topics that need to be considered in designing an energy and battery management system for non-road vehicles. It also becomes clear that only a combination of management systems can significantly increase the performance of a controller.

Book Modeling and Control of Hybrid Propulsion System for Ground Vehicles

Download or read book Modeling and Control of Hybrid Propulsion System for Ground Vehicles written by Yuan Zou and published by Springer. This book was released on 2018-07-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the systematic design of architectures, parameters and control of typical hybrid propulsion systems for wheeled and tracked vehicles based on a combination of theoretical research and engineering practice. Adopting a mechatronic system dynamics perspective, principles and methods from the fields of optimal control and system optimization are applied in order to analyze the hybrid propulsion configuration and controller design. Case investigations for typical hybrid propulsion systems of wheeled and tracked ground vehicles are also provided.

Book Hybrid Electric Vehicle Powertrain Control Based on Machine Learning

Download or read book Hybrid Electric Vehicle Powertrain Control Based on Machine Learning written by Zhengyu Yao and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to increased environmental and economic considerations, energy-efficient vehicles such as Hybrid Electric Vehicles (HEVs) have received great attention from the general public as well as automotive research community. HEVs achieve better fuel economy than conventional vehicles by employing two different power sources: a mechanical engine and an electrical motor. By controlling the two power sources optimally based on the current system state under different driving conditions, they can achieve much improved fuel economy compared to conventional vehicles powered by internal combustion engines only. These power sources have conventionally been controlled by rule-based or optimization-based control algorithms. Rule-based algorithms utilize a well-defined and easy-to-understand control logic while optimization-based control algorithms employ a mathematical function that is minimized by a controller during the vehicle operation. Besides these two conventional approaches, recent advancements in machine learning offer new opportunities in optimal control of multiple power sources in unprecedent ways. Therefore, in order to investigate benefits offered by the new machine learning-based powertrain control paradigm, different machine learning approaches are studied for a HEV in this dissertation.

Book Advanced Combustion for Sustainable Transport

Download or read book Advanced Combustion for Sustainable Transport written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-12 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research.

Book Hybrid Electric Vehicle System Modeling and Control

Download or read book Hybrid Electric Vehicle System Modeling and Control written by Wei Liu and published by John Wiley & Sons. This book was released on 2017-01-25 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition includes approximately 30% new materials covering the following information that has been added to this important work: extends the contents on Li-ion batteries detailing the positive and negative electrodes and characteristics and other components including binder, electrolyte, separator and foils, and the structure of Li-ion battery cell. Nickel-cadmium batteries are deleted. adds a new section presenting the modelling of multi-mode electrically variable transmission, which gradually became the main structure of the hybrid power-train during the last 5 years. newly added chapter on noise and vibration of hybrid vehicles introduces the basics of vibration and noise issues associated with power-train, driveline and vehicle vibrations, and addresses control solutions to reduce the noise and vibration levels. Chapter 10 (chapter 9 of the first edition) is extended by presenting EPA and UN newly required test drive schedules and test procedures for hybrid electric mileage calculation for window sticker considerations. In addition to the above major changes in this second edition, adaptive charging sustaining point determination method is presented to have a plug-in hybrid electric vehicle with optimum performance.