EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mixed finite element Method on Hexahedral Meshes

Download or read book Mixed finite element Method on Hexahedral Meshes written by Jielin Xu and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, we have three goals. The first goal is to investigate the accuracy behavior due to lumping procedure. The second goal is to investigate the effects of different boundary partitions of macro-cells. The last goal is to numerically verify the error estimate proposed by Kuznetsov in 2011. In the first part, we propose a new mixed-finite-element approximation method, elaborate its construction and discretization. We, afterwards, propose a new procedure called “coarsening of fluxes” or “lumping” procedure which will impose only one degree of freedom for flux on each quadrilateral face instead of two under admissible conditions. In the second part, we first derive the optimal boundary partitions for both non-degenerate and degenerate groups. The thesis also introduces two center-based interior partitions which have been widely used nowadays, and we conclude that the optimal boundary partitions discovered in thesis reduce huge amounts of elimination work compared with two center-based interior partitions. We also propose a homogenization procedure which introduce one degree of freedom for solution function in each macro-cell. Finally, the results of numerical experiments demonstrate that with lumping procedure, the errors do not converge to zero, instead they will stay stagnant asymptotically as we refine the mesh.

Book Mixed Finite Element Methods and Applications

Download or read book Mixed Finite Element Methods and Applications written by Daniele Boffi and published by Springer Science & Business Media. This book was released on 2013-07-02 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.

Book Finite Element Mesh Generation

Download or read book Finite Element Mesh Generation written by Daniel S.H. Lo and published by CRC Press. This book was released on 2015-01-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights the Progression of Meshing Technologies and Their Applications Finite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques, including: Delaunay triangulation Advancing-front (ADF) approach Quadtree/Octree techniques Refinement and optimization-based strategies From the geometrical and the topological aspects and their associated operations and inter-relationships, each approach is vividly described and illustrated with examples. Beyond the algorithms, the book also explores the practice of using metric tensor and surface curvatures for generating anisotropic meshes on parametric space. It presents results from research including 3D anisotropic meshing, mesh generation over unbounded domains, meshing by means of intersection, re-meshing by Delaunay-ADF approach, mesh refinement and optimization, generation of hexahedral meshes, and large scale and parallel meshing, along with innovative unpublished meshing methods. The author provides illustrations of major meshing algorithms, pseudo codes, and programming codes in C++ or FORTRAN. Geared toward research centers, universities, and engineering companies, Finite Element Mesh Generation describes mesh generation methods and fundamental techniques, and also serves as a valuable reference for laymen and experts alike.

Book The GETMe Mesh Smoothing Framework

Download or read book The GETMe Mesh Smoothing Framework written by Dimitris P. Vartziotis and published by CRC Press. This book was released on 2018-12-07 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: • Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. • Supports the reader in understanding and implementing GETMe-based mesh smoothing. • Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. • Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. • Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. • Includes a broad range of numerical examples and compares results with those of other smoothing methods.

Book Stabilised Mixed Finite Element Methods on Anisotropic Meshes

Download or read book Stabilised Mixed Finite Element Methods on Anisotropic Meshes written by Andreas Wachtel and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Book Mixed Finite Element Technologies

Download or read book Mixed Finite Element Technologies written by Peter Wriggers and published by Springer Science & Business Media. This book was released on 2009-06-16 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed finite element methods are a tool to solve complex engineering problems of different nature. This subject is treated in the volume from the engineering and the mathematical point. Different applications are considered which depict the value of mixed formulations in engineering on one side. On the other side the mathematical background is provided including proofs of convergence and stability of these methods and adequate solvers for mixed problems are discussed. This broad spectrum yields an indepth treatment of mixed methods from different perspectives.

Book Mesh Free Methods

    Book Details:
  • Author : G.R. Liu
  • Publisher : CRC Press
  • Release : 2002-07-29
  • ISBN : 1420040588
  • Pages : 715 pages

Download or read book Mesh Free Methods written by G.R. Liu and published by CRC Press. This book was released on 2002-07-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: As we attempt to solve engineering problems of ever increasing complexity, so must we develop and learn new methods for doing so. The Finite Difference Method used for centuries eventually gave way to Finite Element Methods (FEM), which better met the demands for flexibility, effectiveness, and accuracy in problems involving complex geometry. Now,

Book Mixed and Hybrid Finite Element Methods

Download or read book Mixed and Hybrid Finite Element Methods written by Franco Brezzi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.

Book Mixed Finite Element Method

Download or read book Mixed Finite Element Method written by Apostol Poceski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, based on 16 years of work on the finite element method, the author presents the essence of a new, direct approach to the FEM. The work is focused on the mixed method and shows how reliable results may be obtained with fewer equations than usual. The basic principles, the fundamentals and the essence of the FEM are presented, then the method is applied to the analysis of one, two, and three-dimensional problems. It is shown that mixed elements offer superior accuracy compared with stiffness elements. Finally, some new achievements and perspectives for further development are presented. The book is intended for undergraduate and graduate students, mathematicians, research engineers and practicing engineers. To understand the book, a familiarity with classical mechanics is sufficient.

Book Hybrid Particle element Method for a General Hexahedral Mesh

Download or read book Hybrid Particle element Method for a General Hexahedral Mesh written by Roque Julio Hernandez and published by . This book was released on 2009 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of improved numerical methods for computer simulation of high velocity impact dynamics is of importance in a variety of science and engineering fields. The growth of computing capabilities has created a demand for improved parallel algorithms for high velocity impact modeling. In addition, there are selected impact applications where experimentation is very costly, or even impossible (e.g. when certain bioimpact or space debris problems are of interest). This dissertation extends significantly the class of problems where particle-element based impact simulation techniques may be effectively applied in engineering design. This dissertation develops a hybrid particle-finite element method for a general hexahedral mesh. This work included the formulation of a numerical algorithm for the generation of an ellipsoidal particle set for an unstructured hex mesh, and a new interpolation kernel for the density. The discrete model is constructed using thermomechanical Lagrange equations. The formulation is validated via simulation of published impact experiments.

Book A Simple Introduction to the Mixed Finite Element Method

Download or read book A Simple Introduction to the Mixed Finite Element Method written by Gabriel N. Gatica and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to provide a simple and accessible introduction to the mixed finite element method as a fundamental tool to numerically solve a wide class of boundary value problems arising in physics and engineering sciences. The book is based on material that was taught in corresponding undergraduate and graduate courses at the Universidad de Concepcion, Concepcion, Chile, during the last 7 years. As compared with several other classical books in the subject, the main features of the present one have to do, on one hand, with an attempt of presenting and explaining most of the details in the proofs and in the different applications. In particular several results and aspects of the corresponding analysis that are usually available only in papers or proceedings are included here.

Book Delaunay Mesh Generation

Download or read book Delaunay Mesh Generation written by Siu-Wing Cheng and published by CRC Press. This book was released on 2016-04-19 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by authors at the forefront of modern algorithms research, Delaunay Mesh Generation demonstrates the power and versatility of Delaunay meshers in tackling complex geometric domains ranging from polyhedra with internal boundaries to piecewise smooth surfaces. Covering both volume and surface meshes, the authors fully explain how and why thes

Book Finite Element Methods for Navier Stokes Equations

Download or read book Finite Element Methods for Navier Stokes Equations written by Vivette Girault and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Book How To Use Elements Effectively

Download or read book How To Use Elements Effectively written by Trevor Hellen and published by Lulu.com. This book was released on 2014-11-19 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this 'How To' book is to explain the issues involved in designing suitable meshes and selecting appropriate elements for solving such problems. The emphasis is on using the more popular types of element in elastic conditions, although the techniques and mechanics of actual mesh generation software are not covered.

Book Automatic Mesh Generation

Download or read book Automatic Mesh Generation written by Paul L. George and published by . This book was released on 1991 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: