EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mitigation of Soft Errors in Nanoscale VLSI Circuits

Download or read book Mitigation of Soft Errors in Nanoscale VLSI Circuits written by Nagarajan Ranganathan and published by Springer. This book was released on 2014-03-28 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability is a key concern in VLSI systems and transient/intermittent faults, often caused by soft errors, require designers to create special mitigation techniques. This book describes such techniques, spanning all levels of the design flow, to reduce systematically the vulnerability of VLSI systems to soft errors. Readers will be enabled to address soft error issues early in their design flow, allowing them to weigh the implications of dedicating more resources for soft error detection and prevention, against the correlating impact on delay, power and area.

Book Soft Error Reliability of VLSI Circuits

Download or read book Soft Error Reliability of VLSI Circuits written by Behnam Ghavami and published by Springer Nature. This book was released on 2020-10-13 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for readers who are interested in the design of robust and reliable electronic digital systems. The authors cover emerging trends in design of today’s reliable electronic systems which are applicable to safety-critical applications, such as automotive or healthcare electronic systems. The emphasis is on modeling approaches and algorithms for analysis and mitigation of soft errors in nano-scale CMOS digital circuits, using techniques that are the cornerstone of Computer Aided Design (CAD) of reliable VLSI circuits. The authors introduce software tools for analysis and mitigation of soft errors in electronic systems, which can be integrated easily with design flows. In addition to discussing soft error aware analysis techniques for combinational logic, the authors also describe new soft error mitigation strategies targeting commercial digital circuits. Coverage includes novel Soft Error Rate (SER) analysis techniques such as process variation aware SER estimation and GPU accelerated SER analysis techniques, in addition to SER reduction methods such as gate sizing and logic restructuring based SER techniques.

Book Architectures and Algorithms for Mitigation of Soft Errors in Nanoscale VLSI Circuits

Download or read book Architectures and Algorithms for Mitigation of Soft Errors in Nanoscale VLSI Circuits written by Koustav Bhattacharya and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: The occurrence of transient faults like soft errors in computer circuits poses a significant challenge to the reliability of computer systems. Soft error, which occurs when the energetic neutrons coming from space or the alpha particles arising out of packaging materials hit the transistors, may manifest themselves as a bit flip in the memory element or as a transient glitch generated at any internal node of combinational logic, which may subsequently propagate to and be captured in a latch. Although the problem of soft errors was earlier only a concern for space applications, aggressive technology scaling trends have exacerbated the problem to modern VLSI systems even for terrestrial applications. In this dissertation, we explore techniques at all levels of the design flow to reduce the vulnerability of VLSI systems against soft errors without compromising on other design metrics like delay, area and power. We propose new models for estimating soft errors for storage structures and combinational logic. While soft errors in caches are estimated using the vulnerability metric, soft errors in logic circuits are estimated using two new metrics called the glitch enabling probability (GEP) and the cumulative probability of observability (CPO). These metrics, based on signal probabilities of nets, accurately model soft errors in radiation-aware synthesis algorithms and helps in efficient exploration of the design solution space during optimization. At the physical design level, we leverage the use of larger netlengths to provide larger RC ladders for effectively filtering out the transient glitches. Towards this, a new heuristic has been developed to selectively assign larger wirelengths to certain critical nets. This reduces the delay and area overhead while improving the immunity to soft errors. Based on this, we propose two placement algorithms based on simulated annealing and quadratic programming which significantly reduce the soft error rates of circuits. At the circuit level, we develop techniques for hardening circuit nodes using a novel radiation jammer technique. The proposed technique is based on the principles of a RC differentiator and is used to isolate the driven cell from the driving cell which is being hit by a radiation strike. Since the blind insertion of radiation blocker cells on all circuit nodes is expensive, candidate nodes are selected for insertion of these cells using a new metric called the probability of radiation blocker circuit insertion (PRI). We investigate a gate sizing algorithm, at the logic level, in which we simultaneously optimize both the soft error rate (SER) and the crosstalk noise besides the power and performance of circuits while considering the effect of process variations. The reliability centric gate sizing technique has been formulated as a mathematical program and is efficiently solved. At the architectural level, we develop solutions for the correction of multi-bit errors in large L2 caches by controlling or mining the redundancy in the memory hierarchy and methods to increase the amount of redundancy in the memory hierarchy by employing a redundancy-based replacement policy, in which the amount of redundancy is controlled using a user defined redundancy threshold. The novel architectures and the new reliability-centric synthesis algorithms proposed for the various design abstraction levels have been shown to achieve significant reduction of soft error rates in current nanometer circuits. The design techniques, algorithms and architectures can be integrated into existing design flows. A VLSI system implementation can leverage on the architectural solutions for the reliability of the caches while the custom hardware synthesized for the VLSI system can be protected against radiation strikes by utilizing the circuit level, logic level and layout level optimization algorithms that have been developed.

Book Analysis and Design of Resilient VLSI Circuits

Download or read book Analysis and Design of Resilient VLSI Circuits written by Rajesh Garg and published by Springer Science & Business Media. This book was released on 2009-10-22 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is motivated by the challenges faced in designing reliable VLSI systems in modern VLSI processes. The reliable operation of integrated circuits (ICs) has become increasingly dif?cult to achieve in the deep submicron (DSM) era. With continuouslydecreasing device feature sizes, combinedwith lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations, and radiation-inducedsoft errors. Among these noise sources, soft errors(or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as c- binational logic circuits. Also, in the DSM era, process variations are increasing at a signi?cant rate, making it more dif?cult to design reliable VLSI circuits. Hence, it is important to ef?ciently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this research mo- graph presents several analysis and design techniques with the goal of realizing VLSI circuits, which are radiation and process variation tolerant.

Book Soft Error Mechanisms  Modeling and Mitigation

Download or read book Soft Error Mechanisms Modeling and Mitigation written by Selahattin Sayil and published by Springer. This book was released on 2016-02-25 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption and improve soft error reliability at the same time.

Book Soft Errors

Download or read book Soft Errors written by Jean-Luc Autran and published by CRC Press. This book was released on 2017-12-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft errors are a multifaceted issue at the crossroads of applied physics and engineering sciences. Soft errors are by nature multiscale and multiphysics problems that combine not only nuclear and semiconductor physics, material sciences, circuit design, and chip architecture and operation, but also cosmic-ray physics, natural radioactivity issues, particle detection, and related instrumentation. Soft Errors: From Particles to Circuits addresses the problem of soft errors in digital integrated circuits subjected to the terrestrial natural radiation environment—one of the most important primary limits for modern digital electronic reliability. Covering the fundamentals of soft errors as well as engineering considerations and technological aspects, this robust text: Discusses the basics of the natural radiation environment, particle interactions with matter, and soft-error mechanisms Details instrumentation developments in the fields of environment characterization, particle detection, and real-time and accelerated tests Describes the latest computational developments, modeling, and simulation strategies for the soft error-rate estimation in digital circuits Explores trends for future technological nodes and emerging devices Soft Errors: From Particles to Circuits presents the state of the art of this complex subject, providing comprehensive knowledge of the complete chain of the physics of soft errors. The book makes an ideal text for introductory graduate-level courses, offers academic researchers a specialized overview, and serves as a practical guide for semiconductor industry engineers or application engineers.

Book Noise Contamination in Nanoscale VLSI Circuits

Download or read book Noise Contamination in Nanoscale VLSI Circuits written by Selahattin Sayil and published by Springer Nature. This book was released on 2022-08-31 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides readers with a comprehensive introduction to various noise sources that significantly reduce performance and reliability in nanometer-scale integrated circuits. The author covers different types of noise, such as crosstalk noise caused by signal switching of adjacent wires, power supply noise or IR voltage drop in the power line due to simultaneous buffer / gate switching events, substrate coupling noise, radiation-induced transients, thermally induced noise and noise due to process and environmental Coverages also includes the relationship between some of these noise sources, as well as compound effects, and modeling and mitigation of noise mechanisms.

Book VLSI SoC  System on Chip in the Nanoscale Era     Design  Verification and Reliability

Download or read book VLSI SoC System on Chip in the Nanoscale Era Design Verification and Reliability written by Thomas Hollstein and published by Springer. This book was released on 2017-08-31 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains extended and revised versions of the best papers presented at the 24th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2016, held in Tallinn, Estonia, in September 2016. The 11 papers included in the book were carefully reviewed and selected from the 36 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the latest scientific and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) Design.

Book Musterrezepturen f  r die Schulspeisung

Download or read book Musterrezepturen f r die Schulspeisung written by and published by . This book was released on 1994 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probabilistic Analysis of Soft Errors in VLSI Circuits

Download or read book Probabilistic Analysis of Soft Errors in VLSI Circuits written by Silvano Arturo Brewster and published by . This book was released on 1988 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soft Error Analysis and Mitigation in Circuits Involving C elements

Download or read book Soft Error Analysis and Mitigation in Circuits Involving C elements written by and published by . This book was released on 2015 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale VLSI

Download or read book Nanoscale VLSI written by Rohit Dhiman and published by Springer Nature. This book was released on 2020-10-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes methodologies in the design of VLSI devices, circuits and their applications at nanoscale levels. The book begins with the discussion on the dominant role of power dissipation in highly scaled devices.The 15 Chapters of the book are classified under four sections that cover design, modeling, and simulation of electronic, magnetic and compound semiconductors for their applications in VLSI devices, circuits, and systems. This comprehensive volume eloquently presents the design methodologies for ultra–low power VLSI design, potential post–CMOS devices, and their applications from the architectural and system perspectives. The book shall serve as an invaluable reference book for the graduate students, Ph.D./ M.S./ M.Tech. Scholars, researchers, and practicing engineers working in the frontier areas of nanoscale VLSI design.

Book Ageing of Integrated Circuits

Download or read book Ageing of Integrated Circuits written by Basel Halak and published by Springer Nature. This book was released on 2019-09-30 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the latest research into integrated circuits’ ageing, explaining the causes of this phenomenon, describing its effects on electronic systems, and providing mitigation techniques to build ageing-resilient circuits.

Book Dependable Multicore Architectures at Nanoscale

Download or read book Dependable Multicore Architectures at Nanoscale written by Marco Ottavi and published by Springer. This book was released on 2017-08-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the dependability challenges in today's advanced computing systems. It is an in-depth discussion of all the technological and design-level techniques that may be used to overcome these issues and analyzes various dependability-assessment methods. The impact of individual application scenarios on the definition of challenges and solutions is considered so that the designer can clearly assess the problems and adjust the solution based on the specifications in question. The book is composed of three sections, beginning with an introduction to current dependability challenges arising in complex computing systems implemented with nanoscale technologies, and of the effect of the application scenario. The second section details all the fault-tolerance techniques that are applicable in the manufacture of reliable advanced computing devices. Different levels, from technology-level fault avoidance to the use of error correcting codes and system-level checkpointing are introduced and explained as applicable to the different application scenario requirements. Finally the third section proposes a roadmap of future trends in and perspectives on the dependability and manufacturability of advanced computing systems from the special point of view of industrial stakeholders. Dependable Multicore Architectures at Nanoscale showcases the original ideas and concepts introduced into the field of nanoscale manufacturing and systems reliability over nearly four years of work within COST Action IC1103 MEDIAN, a think-tank with participants from 27 countries. Academic researchers and graduate students working in multi-core computer systems and their manufacture will find this book of interest as will industrial design and manufacturing engineers working in VLSI companies.

Book Nanoscale Memristor Device and Circuits Design

Download or read book Nanoscale Memristor Device and Circuits Design written by Balwinder Raj and published by Elsevier. This book was released on 2023-11-08 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Memristor Device and Circuits Design provides theoretical frameworks, including (i) the background of memristors, (ii) physics of memristor and their modeling, (iii) menristive device applications, and (iv) circuit design for security and authentication. The book focuses on a broad aspect of realization of these applications as low cost and reliable devices. This is an important reference that will help materials scientists and engineers understand the production and applications of nanoscale memrister devices. A memristor is a two-terminal memory nanoscale device that stores information in terms of high/low resistance. It can retain information even when the power source is removed, i.e., "non-volatile." In contrast to MOS Transistors (MOST), which are the building blocks of all modern mobile and computing devices, memristors are relatively immune to radiation, as well as parasitic effects, such as capacitance, and can be much more reliable. This is extremely attractive for critical safety applications, such as nuclear and aerospace, where radiation can cause failure in MOST-based systems. - Outlines the major principles of circuit design for nanoelectronic applications - Explores major applications, including memristor-based memories, sensors, solar cells, or memristor-based hardware and software security applications - Assesses the major challenges to manufacturing nanoscale memristor devices at an industrial scale

Book Hardware and Software  Verification and Testing

Download or read book Hardware and Software Verification and Testing written by Roderick Bloem and published by Springer. This book was released on 2016-10-31 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 12th International Haifa Verification Conference, HVC 2016, held in Haifa, Israel in November 2016. The 13 revised full papers and one tool paper presented were carefully reviewed and selected from 26 submissions. They are dedicated to advance the state of the art and state of the practice in verification and testing and are discussing future directions of testing and verification for hardware, software, and complex hybrid systems.